视神经属于中枢神经的一部分,损伤后难以再生。视神经损伤通常伴随视网膜神经节细胞(retinal ganglion cells,RGCs)的持续性凋亡及视神经变性坏死,引起视力损害甚至完全失明。目前针对视神经再生的基础研究主要集中于保护和维持视神经损伤后RGCs的存活、促进RGCs轴突再生及重建视神经功能。本文以RGCs保护、轴突再生及视神经功能重建等为关键词,查询国内外最新视神经再生研究类文献,并分析整理,从抗氧化应激、提供外源性细胞因子、炎症刺激、抗胶质瘢痕、基因调控等方面阐述近年的视神经再生研究进展,以期对后续的基础研究开展及临床转化有所帮助。
Optic nerves are a part of the central nervous system, which is difficult to regenerate after injury. Optic nerve injury is usually accompanied by continuous apoptosis of retinal ganglion cells (RGCs) and degeneration or necrosis of optic nerves, resulting in visual impairment or even complete blindness. At present, the basic research on optic nerve regeneration mainly focuses on protecting and maintaining the survival of RGCs after optic nerve injury, promoting RGCs axon regeneration, and reconstructing optic nerve function. In this paper, RGCs protection,axon regeneration, and optic nerve function reconstruction are used as key words to collect the latest domestic and foreign literatures on optic nerve regeneration. The research progress of optic nerve regeneration in recent years was reviewed from the aspects of antioxidant stress, provision of exogenous cytokines, inflammatory stimulation, anti-glial scar, gene regulation and so on, in order to help the follow-up basic research and clinical translation.
近年来,眼科人工智能(artificial intelligence,AI)迅猛发展,眼底影像因易获取及其丰富的生物信息成为研究热点,眼底影像的AI分析在眼底影像分析中的应用不断深入、拓展。目前,关于糖尿病性视网膜病变(diabetic retinopathy,DR)、年龄相关性黄斑变性(age-related macular degeneration,AMD)、青光眼等常见眼底疾病的临床筛查、诊断和预测已有较多AI研究,相关成果已逐步应用于临床实践。除眼科疾病以外,探究眼底特征与全身各种疾病之间的关系并据此研发AI诊断系统已经成为当下的又一热门研究领域。AI应用于眼底影像分析将改善医疗资源紧缺、诊断效率低下的情况,为多种疾病的筛查和诊断开辟“新赛道”。未来眼底影像AI分析的研究应着眼于多种眼底疾病的智能性、全面性诊断,对复杂性疾病进行综合性的辅助诊断;注重整合标准化、高质量的数据资源,提高算法性能、设计贴合临床的研究方案。
In recent years, artificial intelligence (AI) in ophthalmology has developed rapidly. Fundus image has become a research hotspot due to its easy access and rich biological information. The application of AI analysis in fundus image is under continuous development and exploration. At present, there have been many AI studies on clinical screening, diagnosis and prediction of common fundus diseases such as diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma, and related achievements have been gradually applied in clinical practice. In addition to ophthalmic diseases, exploring the relationship between fundus features and various diseases and developing AI diagnostic systems based on this has become another popular research field. The application of AI in fundus image analysis will improve the shortage of medical resources and low diagnostic efficiency, and open up a “new track” for screening and diagnosis of various diseases. In the future, research on AI analysis of fundus image should focus on the intelligent and comprehensive diagnosis of multiple fundus diseases, and comprehensive auxiliary diagnosis of complex diseases, and lays emphasis on the integration of standardized and high-quality data resources, improve algorithm performance, and design clinically appropriate research program.
视神经脊髓炎谱系疾病相关视神经炎是一种累及视神经的脱髓鞘性炎症疾病,视力损伤严重,预后差,复发率高。及时控制急性发作和有效预防复发是治疗的关键。目前治疗主要包括糖皮质激素、血浆置换、免疫吸附、免疫抑制剂、靶向单抗类药物。特别是近年来依库丽单抗、萨特利珠单抗、及依那利珠单抗取得重大进展。该文综述视神经脊髓炎谱系疾病相关视神经炎近年治疗研究进展,期望为临床决策提供有益参考。
Neuromyelitis optica spectrum disorders (NMOSD) is a central nervous system inflammatory demyelinating disease with involvement of the optic nerve and spinal cord, with poor prognosis and high recurrence rate. Timely control of acute attacks and effective prevention of recurrence are the keys to treatment. This article reviews the recent research progress in the treatment of optic neuritis associated with NMOSD , hoping to provide useful references for clinical decision-making.
近年来随着人口老龄化的发展、人群用眼方式的改变,现有的眼科医疗资源正越来越难以满足日渐增长的医疗需求,亟需新型的诊疗模式予以补足。眼科人工智能作为眼科领域的新兴元素,在眼病的筛查诊断中发展迅速,主要表现为“眼部图像数据+人工智能”的模式。近年来,随着该模式在白内障、青光眼、糖尿病性视网膜病变(diabetic retinopathy,DR)等常见病中研究的深入,相关技术日渐成熟,表现出了较大的应用优势与应用前景,部分技术甚至成功转化并被逐渐应用于临床。眼科诊疗向智慧医学模式的过渡,有望缓解日益增长的医疗需求与紧缺的医疗资源之间的矛盾,从而提高整体的医疗服务水平。
The development of population aging and changes in the way people use their eyes over the recent years have increasingly challenged the existing ophthalmic medical resources to meet the growing medical needs, thus urgently calling for a novel diagnostic and treatment mode. Despite its status as an emerging sector in ophthalmology, ophthalmic artificial intelligence has developed rapidly in the screening and diagnosis of eye diseases, as can be seen in practices adopting the “eye imaging data + AI” mode. In recent years, with the intensified research on this mode with respect to common diseases such as cataract, glaucoma and diabetic retinopathy, relevant technologies have grown increasingly mature, presenting undeniable application superiority and prospects. Some of the relevant technical achievements have also been successfully transformed for practical usage, and are gradually being applied to clinical practices. Ophthalmic diagnosis and treatment are transitioning toward the era of intelligent medical services, which are expected to reduce the contradictions between the growing medical needs and the shortage of medical resources, as well as ultimately improve the overall experience of medical services.
随着人口老龄化、生活方式的改变,眼科疾病患病人数的增加、国家眼病诊疗相关政策的持续推动、居民健康意识的逐渐提升,眼科门急诊患者数量持续增长,亟需构建科学的眼科急诊预检分诊标准,合理配置医疗资源,确保患者得到及时、恰当的治疗。国外已有医院依据患者症状或体征的严重程度对患者进行等级划分,建立起相对成熟的眼科急诊预检分诊模式,我国目前尚没有统一的、权威的眼科急诊预检分诊标准,国内外现行的眼科急诊预检分诊模式的分诊精准度及临床适用性有待进一步探索。该文通过综述国内外眼科急诊分诊标准及应用评价、眼科远程急诊预检分诊方式研究进展,以期为构建符合我国国情的、科学有效的眼科急诊预检分诊标准、提高眼科急诊分诊质量提供参考。
With the aging of population, the changing of lifestyle and the increasing number of ophthalmic emergency patients,Chinese national policies related to ophthalmic diagnosis and treatment are continually promoted, and residents' health awareness are gradually improved, the volume of ophthalmic outpatients and emergency patients continues to increase. It is urgent needed to establish scientific ophthalmic emergency pre-examination and triage criteria, to reasonably allocate medical resources, and to ensure that patients receive timely and appropriate treatment. The relatively mature ophthalmic emergency pre-examination and triage models with the severity of patients' symptoms or physical signs,have been established in foreign hospitals. Currently, there is no unified and authoritative ophthalmic emergency triage criteria in China. The accuracy and clinical applicability of the existing ophthalmic emergency triage models at home and abroad need to be further explored. This article reviewed the ophthalmic emergency triage criteria and application evaluation at home and abroad, and remote emergency triage in ophthalmology, in order to provide a reference for establishing a scientific and effective ophthalmic emergency triage criteria comformed Chinese national conditions, and improving the quality of ophthalmic emergency triage.
眼表菌群是定植于眼表的各种微生物群落,以细菌为主。在正常情况下,眼表菌群与人体眼表组织的细胞和平共生,维持眼表的稳态,共同保证眼表的健康。但在环境改变或免疫力低下的情况下,眼表菌群会发生变化,与眼部疾病的产生与发展关系密切,对人类的健康造成巨大的危害。随着组学研究的不断发展,我们对眼表菌群有了新的认识,为眼表疾病的发病机制、治疗开辟了新的思路,同时也提出了新的挑战。本文对国内外眼表菌群与疾病关系进行综述,为眼表疾病的发生、发展以及治疗提供参考。
The microbiome of the ocular surface consists of various microbial communities that colonize on the eye surface, mainly bacteria. The stabilization of the microbiome and the other ocular surface components plays an important role in maintaining the homeostasis of the ocular surface. However, unpredictable changes of ocular surface microbiome are strongly associated with ocular surface diseases in the situation of environmental changes or destruction of immune system. With the innovation of inspection technology, the current gene sequencing technology is applied to detect the ocular surface microbiome and confirm that the eye microbiome is closely related to ocular surface diseases. This paper investigates the corelation of ocular surface microbiomes and diseases. Moreover, we provide areference for the occurrence and development of ocular surface diseases and their treatment.
阿尔茨海默病(Alzheimer’s disease,AD)是发生于老年期或老年前期的中枢神经系统退行性病变,以进行性认知功能障碍为特征。随着社会老龄化加剧,AD已成为全球公共卫生问题,亟需研发更敏感、便捷和经济的筛查技术进行早期防控。眼球运动与认知功能密切相关,且眼球运动检查有非侵入性、成本低、检查时间短等优点。研究眼球运动异常和认知功能障碍之间的相关性,有助于研发更简便易操作的认知功能障碍筛查工具。随着人工智能技术的发展,机器学习算法强大的特征提取和计算能力对处理眼球运动检查结果有显著优势。本文对既往AD患者与眼球运动异常之间的相关性研究进行综述,并对机器学习算法模型辅助下,基于眼球运动异常模式进行认知功能障碍早期筛查技术开发的研究前景予以展望。
Alzheimer’s disease (AD) is a degenerative disease of the central nervous system that occurs in old age or early old age. It is characterized by progressive cognitive dysfunction. With the world population aging, AD has become a global public health problem. The development of a more sensitive, convenient, and economic screening technology for AD is urgently needed. The eye movement function is closely related to cognitive function. Moreover, eye movement examination has advantages including non-invasiveness, low cost, and short examination time. Researches on the correlation between abnormal eye movement and cognitive dysfunction can help to develop a simple and easy-to-use screening tool for cognitive dysfunction. With the development of artificial intelligence technology, the dominant feature extraction and computing capabilities of machine learning algorithms have a significant advantage in processing eye movement inspection results. This article reviews the correlation between AD and eye movement abnormalities aiming to provide the research prospects of early screening technology development for cognitive dysfunction based on abnormal eye movement with the application of machine learning models.
肥厚型脉络膜谱系疾病(pachychoroid disease spectrum,PCD)包括肥厚型脉络膜色素上皮病变(pachychoroid pigment epitheliopathy,PPE)、中心性浆液性脉络膜视网膜病变(central serous chorioretinopathy,CSC)、肥厚型脉络膜新生血管病变(pachychoroid neovasculopathy,PNV)、息肉样脉络膜血管病变(polypoidal choroidal vasculopathy,PCV)、局灶性脉络膜凹陷(focal choroidal excavation,FCE)和盘周肥厚型脉络膜综合征(peripapillary pachychoroid syndrome,PPS)。有学者将PCD看作脉络膜功能障碍引发的一系列连续疾病过程,但关于PCD的发病机制、形态改变尚未明确。该文对PCD的脉络膜、涡静脉及巩膜相关改变做一综述。
Pachychoroid disease spectrum include pachychoroid pigment epitheliopathy, central serous chorioretinopathy, pachychoroid neovasculopathy, polypoidal choroidal vasculopathy, focal choroidal excavation, and peripapillary pachychoroid syndrome. Currently, some scholars regard pachychoroid disease spectrum as a series of continuous disease processes caused by choroidal dysfunction, but the pathogenesis and morphological changes of pachychoroid disease spectrum are not yet clear. This paper reviews the changes of choroid, vortex veins and sclera in pachychoroid disease spectrum.
玻璃体替代物是玻璃体切割术后的必需品,用于填充玻璃体腔,恢复玻璃体的支撑视网膜、屈光和细胞屏障等功能。严重眼外伤及复杂视网膜脱离引起的视网膜/脉络膜脱离,如选用传统的玻璃体替代物(如硅油)填充,部分患者会出现硅油依赖眼或眼球萎缩,眼球难以保全。折叠式人工玻璃体球囊(foldable capsular vitreous body,FCVB)是我国独立研发的挽救眼球的人工玻璃体,属于国际首创,可以精细模拟自然玻璃体的结构,恢复玻璃体的部分功能。目前临床研究证实FCVB不仅可以有效避免硅油的并发症,还可以维持后房空间,缓慢恢复睫状体的功能,从而治疗硅油依赖眼,阻止眼球进一步萎缩。该文综述了FCVB的研究背景、结构特点、临床应用和拓展研究进展。
Vitreous substitutes are necessary after vitrectomy to fill the vitreous cavity and restore the vitreous to support retinal, refractive, and cellular barrier functions. Severe ocular trauma-induced retinal/choroidal detachment filled with traditional vitreous substitutes (e.g., silicone oil) can lead to silicone oil-dependent eyes and ocular atrophy in some patients, making it difficult to preserve the eye. Foldable capsular vitreous body (FCVB) is an artificial vitreous body independently developed in China to save the eye, which is the first of its kind in the world and can finely simulate the structure of natural vitreous body and restore some of the functions of vitreous body. It has been clinically proven that it can not only effectively avoid the complications of silicone oil, but also maintain the posterior chamber space and slowly restore the function of the ciliary body, thus treating silicone oil-dependent eyes and preventing further atrophy of the eye. This article reviews the research background, structural features, clinical applications and extended studies of FCVB.
随着光学相干断层扫描(optical coherence tomography,OCT)的快速发展和广泛应用,视盘周围高反射卵圆形团块样结构(peripapillary hyper-reflective ovoid mass-like structure,PHOMS)已成为神经眼科临床实践中OCT检查的常见征象之一。该结构是生理性改变还是病理性改变目前尚无定论,推测可能与视乳头轴浆瘀滞有关。该文针对PHOMS的形态特征做一综述,总结各种疾病相关的PHOMS,并提出一些针对PHOMS的疑点及研究方向,旨在为临床医生及早辨别PHOMS、早期治疗眼底疾病提供依据。
With the rapid development and widespread application of optical coherence tomography(OCT), peripapillary hyper-reflective ovoid mass-like structure (PHOMS) has become one of the common signs of OCT in neuro-ophthalmic clinical practice. Whether this structure is physiological or pathological has not been determined, and it is speculated that it may be related to the stagnation of the axial plasma of the optic papilla. In this review, we describe the morphological characteristics of PHOMS, summarize various diseases related to PHOMS, and proposes some doubtful points and research directions for PHOMS, aiming to provide evidence for clinicians to identify PHOMS as early as possible and treat fundus diseases in the early stage.