1、World Health Organization. World report on vision[M]. Geneva: World Health Organization, 2019.World Health Organization. World report on vision[M]. Geneva: World Health Organization, 2019.
2、苏俊. 人工智能技术应用与发展趋势[J]. 电子技术与软件工程, 2018(3): 250.苏俊. 人工智能技术应用与发展趋势[J]. 电子技术与软件工程, 2018(3): 250.
3、 Application and development trend of artificial intelligence technology[J]. Electronic Technology & Software Engineering, 2018 (3): 250. Application and development trend of artificial intelligence technology[J]. Electronic Technology & Software Engineering, 2018 (3): 250.
4、Balyen L, Peto T. Promising artificial intelligence-machine learning-deep learning algorithms in ophthalmology[J]. Asia Pac J Ophthalmol (Phila), 2019, 8(3): 264-272.Balyen L, Peto T. Promising artificial intelligence-machine learning-deep learning algorithms in ophthalmology[J]. Asia Pac J Ophthalmol (Phila), 2019, 8(3): 264-272.
5、赵越越, 康刚劲. 人工智能在白内障诊疗中的应用进展[J]. 眼科学报, 2021, 36(1): 85-90.赵越越, 康刚劲. 人工智能在白内障诊疗中的应用进展[J]. 眼科学报, 2021, 36(1): 85-90.
6、 Advances in application of artificial intelligence in the diagnosis and treatment of cataract[J]. Yan Ke Xue Bao, 2021, 36(1): 85-90. Advances in application of artificial intelligence in the diagnosis and treatment of cataract[J]. Yan Ke Xue Bao, 2021, 36(1): 85-90.
7、Li T, Bo W, Hu C, et al. Applications of deep learning in fundus images: a review[J]. Med Image Anal, 2021, 69: 101971.Li T, Bo W, Hu C, et al. Applications of deep learning in fundus images: a review[J]. Med Image Anal, 2021, 69: 101971.
8、中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2013年版)[J]. 中国医学前沿杂志(电子版), 2015, 7(3): 26-89.中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2013年版)[J]. 中国医学前沿杂志(电子版), 2015, 7(3): 26-89.
9、 Chinese guidelines for prevention and treatment of type 2 diabetes mellitus (2013)[J]. Chinese Journal of the Frontiers of Medical Science. Electronic Version, 2015, 7(3): 26-89. Chinese guidelines for prevention and treatment of type 2 diabetes mellitus (2013)[J]. Chinese Journal of the Frontiers of Medical Science. Electronic Version, 2015, 7(3): 26-89.
10、International Diabetes Federation. IDF Diabetes Atlas (8th edition) 2017[M]. Brussels: International Diabetes Federation, 2017.International Diabetes Federation. IDF Diabetes Atlas (8th edition) 2017[M]. Brussels: International Diabetes Federation, 2017.
11、Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-2410.Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-2410.
12、Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning[J]. Ophthalmology, 2017, 124(7): 962-969.Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning[J]. Ophthalmology, 2017, 124(7): 962-969.
13、ElTanboly A, Ismail M, Shalaby A, et al. A computer-aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images[J]. Med Phys, 2017, 44(3): 914-923.ElTanboly A, Ismail M, Shalaby A, et al. A computer-aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images[J]. Med Phys, 2017, 44(3): 914-923.
14、van der Heijden AA, Abramoff MD, Verbraak F, et al. Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System[J]. Acta Ophthalmol, 2018, 96(1): 63-68.van der Heijden AA, Abramoff MD, Verbraak F, et al. Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System[J]. Acta Ophthalmol, 2018, 96(1): 63-68.
15、Ratanapakorn T, Daengphoonphol A, Eua-Anant N, et al. Digital image processing software for diagnosing diabetic retinopathy from fundus photograph[J]. Clin Ophthalmol, 2019, 13: 641-648.Ratanapakorn T, Daengphoonphol A, Eua-Anant N, et al. Digital image processing software for diagnosing diabetic retinopathy from fundus photograph[J]. Clin Ophthalmol, 2019, 13: 641-648.
16、Wang S, Zhang Y, Lei S, et al. Performance of deep neural network-based artificial intelligence method in diabetic retinopathy screening: a systematic review and meta-analysis of diagnostic test accuracy[J]. Eur J Endocrinol, 2020, 183(1): 41-49.Wang S, Zhang Y, Lei S, et al. Performance of deep neural network-based artificial intelligence method in diabetic retinopathy screening: a systematic review and meta-analysis of diagnostic test accuracy[J]. Eur J Endocrinol, 2020, 183(1): 41-49.
17、赵旋, 曹晓莉, 陈羽中. 糖尿病视网膜病变眼底图像辅助诊断软件的NMPA注册经验[J]. 眼科学报, 2021, 36(1): 111-114.赵旋, 曹晓莉, 陈羽中. 糖尿病视网膜病变眼底图像辅助诊断软件的NMPA注册经验[J]. 眼科学报, 2021, 36(1): 111-114.
18、 NMPA premarket application experience for a computer aided diagnosis software using fundus images of diabetic retinopathy[J]. Yan Ke Xue Bao, 2021, 36(1): 111-114. NMPA premarket application experience for a computer aided diagnosis software using fundus images of diabetic retinopathy[J]. Yan Ke Xue Bao, 2021, 36(1): 111-114.
19、Multinational optical retailer piloting AI and telemedicine technology to protect community eye health during the COVID-19 pandemic[N]. Business Wire, 2020 Jun 08.Multinational optical retailer piloting AI and telemedicine technology to protect community eye health during the COVID-19 pandemic[N]. Business Wire, 2020 Jun 08.
20、Wu JH, Liu TYA, Hsu WT, et al. Performance and limitation of machine learning algorithms for diabetic retinopathy screening: meta-analysis[J]. J Med Internet Res, 2021, 23(7): e23863.Wu JH, Liu TYA, Hsu WT, et al. Performance and limitation of machine learning algorithms for diabetic retinopathy screening: meta-analysis[J]. J Med Internet Res, 2021, 23(7): e23863.
21、Fleckenstein M, Keenan TDL, Guymer RH, et al. Age-related macular degeneration[J]. Nat Rev Dis Primers, 2021, 7(1): 31.Fleckenstein M, Keenan TDL, Guymer RH, et al. Age-related macular degeneration[J]. Nat Rev Dis Primers, 2021, 7(1): 31.
22、Fraccaro P, Nicolo M, Bonetto M, et al. Combining macula clinical signs and patient characteristics for age-related macular degeneration diagnosis: a machine learning approach[J]. BMC Ophthalmol, 2015, 15: 10.Fraccaro P, Nicolo M, Bonetto M, et al. Combining macula clinical signs and patient characteristics for age-related macular degeneration diagnosis: a machine learning approach[J]. BMC Ophthalmol, 2015, 15: 10.
23、Kunumpol P, Umpaipant W, Kanchanaranya N, et al. Automated age-related macular degeneration screening system using fundus images[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2017, 2017: 1469-1472.Kunumpol P, Umpaipant W, Kanchanaranya N, et al. Automated age-related macular degeneration screening system using fundus images[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2017, 2017: 1469-1472.
24、Burlina PM, Joshi N, Pekala M, et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks[J]. JAMA Ophthalmol, 2017, 135(11): 1170-1176.Burlina PM, Joshi N, Pekala M, et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks[J]. JAMA Ophthalmol, 2017, 135(11): 1170-1176.
25、Yoo TK, Choi JY, Seo JG, et al. The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment[J]. Med Biol Eng Comput, 2019, 57(3): 677-687.Yoo TK, Choi JY, Seo JG, et al. The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment[J]. Med Biol Eng Comput, 2019, 57(3): 677-687.
26、Bhuiyan A, Wong TY, Ting DSW, et al. Artificial intelligence to stratify severity of age-related macular degeneration (AMD) and predict risk of progression to late AMD[J]. Transl Vis Sci Technol, 2020, 9(2): 25.Bhuiyan A, Wong TY, Ting DSW, et al. Artificial intelligence to stratify severity of age-related macular degeneration (AMD) and predict risk of progression to late AMD[J]. Transl Vis Sci Technol, 2020, 9(2): 25.
27、Liu Y, Yang J, Zhou Y, et al. Prediction of OCT images of short-term response to anti-VEGF treatment for neovascular age-related macular degeneration using generative adversarial network[J]. Br J Ophthalmol, 2020, 104(12): 1735-1740.Liu Y, Yang J, Zhou Y, et al. Prediction of OCT images of short-term response to anti-VEGF treatment for neovascular age-related macular degeneration using generative adversarial network[J]. Br J Ophthalmol, 2020, 104(12): 1735-1740.
28、Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020[J]. Br J Ophthalmol, 2006, 90(3): 262-267.Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020[J]. Br J Ophthalmol, 2006, 90(3): 262-267.
29、余兆敏, 宋卫平, 邓晓. 光学相干断层成像术在早期诊断青光眼中的应用价值[J]. 临床医学, 2016, 36(2): 112-114.余兆敏, 宋卫平, 邓晓. 光学相干断层成像术在早期诊断青光眼中的应用价值[J]. 临床医学, 2016, 36(2): 112-114.
30、 Optical coherence tomography in early diagnosis of glaucoma[J]. Clinical Medicine, 2016, 36(2): 112-114. Optical coherence tomography in early diagnosis of glaucoma[J]. Clinical Medicine, 2016, 36(2): 112-114.
31、郭慧敏, 陈子林. OCT检测视网膜神经纤维层厚度在青光眼诊断中的应用进展[J]. 医学综述, 2013, 19(7): 1281-1283.郭慧敏, 陈子林. OCT检测视网膜神经纤维层厚度在青光眼诊断中的应用进展[J]. 医学综述, 2013, 19(7): 1281-1283.
32、 Application progress in diagnosis of glaucoma by retinal nerve fiber layer thickness measurement with OCT[J]. Medical Recapitulate, 2013, 19(7): 1281-1283. Application progress in diagnosis of glaucoma by retinal nerve fiber layer thickness measurement with OCT[J]. Medical Recapitulate, 2013, 19(7): 1281-1283.
33、Kim SJ, Cho KJ, Oh S. Development of machine learning models for diagnosis of glaucoma[J]. PLoS One, 2017, 12(5): e0177726.Kim SJ, Cho KJ, Oh S. Development of machine learning models for diagnosis of glaucoma[J]. PLoS One, 2017, 12(5): e0177726.
34、Asaoka R, Murata H, Hirasawa K, et al. Using deep learning and transfer learning to accurately diagnose early-onset glaucoma from macular optical coherence tomography images[J]. Am J Ophthalmol, 2019, 198: 136-145.Asaoka R, Murata H, Hirasawa K, et al. Using deep learning and transfer learning to accurately diagnose early-onset glaucoma from macular optical coherence tomography images[J]. Am J Ophthalmol, 2019, 198: 136-145.
35、An G, Omodaka K, Hashimoto K, et al. Glaucoma diagnosis with machine learning based on optical coherence tomography and color fundus images[J]. J Healthc Eng, 2019, 2019: 4061313.An G, Omodaka K, Hashimoto K, et al. Glaucoma diagnosis with machine learning based on optical coherence tomography and color fundus images[J]. J Healthc Eng, 2019, 2019: 4061313.
36、Diaz-Pinto A, Morales S, Naranjo V, et al. CNNs for automatic glaucoma assessment using fundus images: an extensive validation[J]. Biomed Eng Online, 2019, 18(1): 29.Diaz-Pinto A, Morales S, Naranjo V, et al. CNNs for automatic glaucoma assessment using fundus images: an extensive validation[J]. Biomed Eng Online, 2019, 18(1): 29.
37、Mvoulana A, Kachouri R, Akil M. Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images[J]. Comput Med Imaging Graph, 2019, 77: 101643.Mvoulana A, Kachouri R, Akil M. Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images[J]. Comput Med Imaging Graph, 2019, 77: 101643.
38、Brown JM, Campbell JP, Beers A, et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks[J]. JAMA Ophthalmol, 2018, 136(7): 803-810.Brown JM, Campbell JP, Beers A, et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks[J]. JAMA Ophthalmol, 2018, 136(7): 803-810.
39、Huang YP, Basanta H, Kang EY, et al. Automated detection of early-stage ROP using a deep convolutional neural network[J]. Br J Ophthalmol, 2021, 105(8): 1099-1103.Huang YP, Basanta H, Kang EY, et al. Automated detection of early-stage ROP using a deep convolutional neural network[J]. Br J Ophthalmol, 2021, 105(8): 1099-1103.
40、Ip M, Hendrick A. Retinal vein occlusion review[J]. Asia Pac J Ophthalmol (Phila), 2018, 7(1): 40-45.Ip M, Hendrick A. Retinal vein occlusion review[J]. Asia Pac J Ophthalmol (Phila), 2018, 7(1): 40-45.
41、Nagasato D, Tabuchi H, Ohsugi H, et al. Deep-learning classifier with ultrawide-field fundus ophthalmoscopy for detecting branch retinal vein occlusion[J]. Int J Ophthalmol, 2019, 12(1): 94-99.Nagasato D, Tabuchi H, Ohsugi H, et al. Deep-learning classifier with ultrawide-field fundus ophthalmoscopy for detecting branch retinal vein occlusion[J]. Int J Ophthalmol, 2019, 12(1): 94-99.
42、Nagasato D, Tabuchi H, Ohsugi H, et al. Deep neural network-based method for detecting central retinal vein occlusion using ultrawide-field fundus ophthalmoscopy[J]. J Ophthalmol, 2018, 2018: 1875431.Nagasato D, Tabuchi H, Ohsugi H, et al. Deep neural network-based method for detecting central retinal vein occlusion using ultrawide-field fundus ophthalmoscopy[J]. J Ophthalmol, 2018, 2018: 1875431.
43、Nagasato D, Tabuchi H, Masumoto H, et al. Automated detection of a nonperfusion area caused by retinal vein occlusion in optical coherence tomography angiography images using deep learning[J]. PLoS One, 2019, 14(11): e0223965.Nagasato D, Tabuchi H, Masumoto H, et al. Automated detection of a nonperfusion area caused by retinal vein occlusion in optical coherence tomography angiography images using deep learning[J]. PLoS One, 2019, 14(11): e0223965.
44、Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. JAMA, 2017, 318(22): 2211-2223.Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. JAMA, 2017, 318(22): 2211-2223.
45、Wang X, Ju L, Zhao X, et al. Retinal abnormalities recognition using regional multitask learning[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2019: 30-38.Wang X, Ju L, Zhao X, et al. Retinal abnormalities recognition using regional multitask learning[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2019: 30-38.
46、Li C, Ye J, He J, et al. Dense correlation network for automated multi-label ocular disease detection with paired color fundus photographs[C]//2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). IEEE, 2020: 1-4.Li C, Ye J, He J, et al. Dense correlation network for automated multi-label ocular disease detection with paired color fundus photographs[C]//2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). IEEE, 2020: 1-4.
47、Li B, Chen H, Zhang B, et al. Development and evaluation of a deep learning model for the detection of multiple fundus diseases based on colour fundus photography[J]. Br J Ophthalmol, 2021 Epub ahead of print.Li B, Chen H, Zhang B, et al. Development and evaluation of a deep learning model for the detection of multiple fundus diseases based on colour fundus photography[J]. Br J Ophthalmol, 2021 Epub ahead of print.
48、Lin D, Xiong J, Liu C, et al. Application of Comprehensive Artificial intelligence Retinal Expert (CARE) system: a national real-world evidence study[J]. Lancet Digit Health, 2021, 3(8): e486-e495.Lin D, Xiong J, Liu C, et al. Application of Comprehensive Artificial intelligence Retinal Expert (CARE) system: a national real-world evidence study[J]. Lancet Digit Health, 2021, 3(8): e486-e495.
49、Poplin R, Varadarajan AV, Blumer K, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning[J]. Nat Biomed Eng, 2018, 2(3): 158-164.Poplin R, Varadarajan AV, Blumer K, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning[J]. Nat Biomed Eng, 2018, 2(3): 158-164.
50、O'Bryhim BE, Apte RS, Kung N, et al. Association of preclinical alzheimer disease with optical coherence tomographic angiography findings[J]. JAMA Ophthalmol, 2018, 136(11): 1242-1248.O'Bryhim BE, Apte RS, Kung N, et al. Association of preclinical alzheimer disease with optical coherence tomographic angiography findings[J]. JAMA Ophthalmol, 2018, 136(11): 1242-1248.
51、Golzan SM, Goozee K, Georgevsky D, et al. Retinal vascular and structural changes are associated with amyloid burden in the elderly: ophthalmic biomarkers of preclinical Alzheimer's disease[J]. Alzheimers Res Ther, 2017, 9(1): 13.Golzan SM, Goozee K, Georgevsky D, et al. Retinal vascular and structural changes are associated with amyloid burden in the elderly: ophthalmic biomarkers of preclinical Alzheimer's disease[J]. Alzheimers Res Ther, 2017, 9(1): 13.
52、Tian J, Smith G, Guo H, et al. Modular machine learning for Alzheimer's disease classification from retinal vasculature[J]. Sci Rep, 2021, 11(1): 238.Tian J, Smith G, Guo H, et al. Modular machine learning for Alzheimer's disease classification from retinal vasculature[J]. Sci Rep, 2021, 11(1): 238.
53、Lim LS, Cheung CY, Sabanayagam C, et al. Structural changes in the retinal microvasculature and renal function[J]. Invest Ophthalmol Vis Sci, 2013, 54(4): 2970-2976.Lim LS, Cheung CY, Sabanayagam C, et al. Structural changes in the retinal microvasculature and renal function[J]. Invest Ophthalmol Vis Sci, 2013, 54(4): 2970-2976.
54、Kang EY, Hsieh YT, Li CH, et al. Deep learning-based detection of early renal function impairment using retinal fundus images: model development and validation[J]. JMIR Med Inform, 2020, 8(11): e23472.Kang EY, Hsieh YT, Li CH, et al. Deep learning-based detection of early renal function impairment using retinal fundus images: model development and validation[J]. JMIR Med Inform, 2020, 8(11): e23472.
55、Sabanayagam C, Xu D, Ting DSW, et al. A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations[J]. Lancet Digit Health, 2020, 2(6): e295-e302.Sabanayagam C, Xu D, Ting DSW, et al. A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations[J]. Lancet Digit Health, 2020, 2(6): e295-e302.
56、Aisen ML, Bacon BR, Goodman AM, et al. Retinal abnormalities associated with anemia[J]. Arch Ophthalmol, 1983, 101(7): 1049-1052.Aisen ML, Bacon BR, Goodman AM, et al. Retinal abnormalities associated with anemia[J]. Arch Ophthalmol, 1983, 101(7): 1049-1052.
57、Mitani A, Huang A, Venugopalan S, et al. Detection of anaemia from retinal fundus images via deep learning[J]. Nat Biomed Eng, 2020, 4(1): 18-27.Mitani A, Huang A, Venugopalan S, et al. Detection of anaemia from retinal fundus images via deep learning[J]. Nat Biomed Eng, 2020, 4(1): 18-27.
58、Xiao W, Huang X, Wang JH, et al. Screening and identifying hepatobiliary diseases through deep learning using ocular images: a prospective, multicentre study[J]. Lancet Digit Health, 2021, 3(2): e88-e97.Xiao W, Huang X, Wang JH, et al. Screening and identifying hepatobiliary diseases through deep learning using ocular images: a prospective, multicentre study[J]. Lancet Digit Health, 2021, 3(2): e88-e97.
59、Rim TH, Lee G, Kim Y, et al. Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms[J]. Lancet Digit Health, 2020, 2(10): e526-e536.Rim TH, Lee G, Kim Y, et al. Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms[J]. Lancet Digit Health, 2020, 2(10): e526-e536.