1、曲毅, 张焕开, 宋先, 等. 人工智能诊断系统在视网膜疾病的研究进展[J]. 山东大学学报(医学版), 2020, 58(11): 39-44. 曲毅, 张焕开, 宋先, 等. 人工智能诊断系统在视网膜疾病的研究进展[J]. 山东大学学报(医学版), 2020, 58(11): 39-44.
2、 Research progress of artificial intelligence diagnosis system in retinal diseases[J]. Journal of Shandong University. Health Sciences, 2020, 58(11): 39-44. Research progress of artificial intelligence diagnosis system in retinal diseases[J]. Journal of Shandong University. Health Sciences, 2020, 58(11): 39-44.
3、林浩添, 李龙辉, 陈睛晶. 儿童眼病的人工智能研究进展[J]. 山东大学学报(医学版), 2020, 58(11): 11-16. 林浩添, 李龙辉, 陈睛晶. 儿童眼病的人工智能研究进展[J]. 山东大学学报(医学版), 2020, 58(11): 11-16.
4、 Research progress of artificial intelligence in childhood eye diseases[J]. Journal of Shandong University. Health Sciences, 2020, 58(11): 11-16. Research progress of artificial intelligence in childhood eye diseases[J]. Journal of Shandong University. Health Sciences, 2020, 58(11): 11-16.
5、Zimmermann A, Carvalho KMM, Atihe C, et al. Visual development in children aged 0 to 6 years[J]. Arq Bras Oftalmol, 2019, 82(3): 173-175.Zimmermann A, Carvalho KMM, Atihe C, et al. Visual development in children aged 0 to 6 years[J]. Arq Bras Oftalmol, 2019, 82(3): 173-175.
6、Long E, Lin H, Liu Z, et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts[J]. Nature Biomedical Engineering, 2017, 1: 24.Long E, Lin H, Liu Z, et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts[J]. Nature Biomedical Engineering, 2017, 1: 24.
7、赵金凤, 吴桢泉, 郑磊, 等. 人工智能在眼科疾病诊疗的应用现状[J]. 眼科新进展, 2019, 39(5): 495-500.赵金凤, 吴桢泉, 郑磊, 等. 人工智能在眼科疾病诊疗的应用现状[J]. 眼科新进展, 2019, 39(5): 495-500.
8、 Application of artificial intelligence in the diagnosis and treatment of ocular diseases[J]. Recent Advances in Ophthalmology, 2019, 39(5): 495-500. Application of artificial intelligence in the diagnosis and treatment of ocular diseases[J]. Recent Advances in Ophthalmology, 2019, 39(5): 495-500.
9、Lin D, Chen J, Lin Z, et al. A practical model for the identification of congenital cataracts using machine learning[J]. EBioMedicine, 2020, 51: 102621.Lin D, Chen J, Lin Z, et al. A practical model for the identification of congenital cataracts using machine learning[J]. EBioMedicine, 2020, 51: 102621.
10、林卓玲, 李强, 项毅帆, 等. 智能语音随访系统在先天性白内障患儿术后随访中的应用与分析[J]. 眼科学报, 2021, 36(1): 23-29. 林卓玲, 李强, 项毅帆, 等. 智能语音随访系统在先天性白内障患儿术后随访中的应用与分析[J]. 眼科学报, 2021, 36(1): 23-29.
11、 Application and analysis of artificial intelligence voice system in postoperative follow-up of children with congenital cataract[J]. Eye Science, 2021, 36(1): 23-29. Application and analysis of artificial intelligence voice system in postoperative follow-up of children with congenital cataract[J]. Eye Science, 2021, 36(1): 23-29.
12、杜海涛, 周鼎, 施展, 等. 哈尔滨市盲校儿童视力调查及致盲原因分析[J]. 中国斜视与小儿眼科杂志, 2018, 26(1): 35-37. 杜海涛, 周鼎, 施展, 等. 哈尔滨市盲校儿童视力调查及致盲原因分析[J]. 中国斜视与小儿眼科杂志, 2018, 26(1): 35-37.
13、 The investigation and analysis of the causes of blindness and visual acuities of children in Harbin Blind School[J]. Chinese Journal of Strabismus & Pediatric Ophthalmology, 2018, 26(1): 35-37. The investigation and analysis of the causes of blindness and visual acuities of children in Harbin Blind School[J]. Chinese Journal of Strabismus & Pediatric Ophthalmology, 2018, 26(1): 35-37.
14、Bizios D, Heijl A, Hougaard JL, et al. Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by stratus OCT[J]. Acta Ophthalmol, 2010, 88(1): 44-52.Bizios D, Heijl A, Hougaard JL, et al. Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by stratus OCT[J]. Acta Ophthalmol, 2010, 88(1): 44-52.
15、Kim SJ, Cho KJ, Oh S. Development of machine learning models for diagnosis of glaucoma[J]. PLoS One, 2017, 12(5): e0177726.Kim SJ, Cho KJ, Oh S. Development of machine learning models for diagnosis of glaucoma[J]. PLoS One, 2017, 12(5): e0177726.
16、Sample PA, Chan K, Boden C, et al. Using unsupervised learning with variational Bayesian mixture of factor analysis to identify patterns of glaucomatous visual field defects[J]. Invest Ophthalmol Vis Sci, 2004, 45(8): 2596-2605.Sample PA, Chan K, Boden C, et al. Using unsupervised learning with variational Bayesian mixture of factor analysis to identify patterns of glaucomatous visual field defects[J]. Invest Ophthalmol Vis Sci, 2004, 45(8): 2596-2605.
17、Elze T, Pasquale LR, Shen LQ, et al. Patterns of functional vision loss in glaucoma determined with archetypal analysis[J]. J R Soc Interface, 2015, 12(103): 20141118.Elze T, Pasquale LR, Shen LQ, et al. Patterns of functional vision loss in glaucoma determined with archetypal analysis[J]. J R Soc Interface, 2015, 12(103): 20141118.
18、Kucur ?S, Holló G, Sznitman R. A deep learning approach to automatic detection of early glaucoma from visual fields[J]. PLoS One, 2018, 13(11): e0206081.Kucur ?S, Holló G, Sznitman R. A deep learning approach to automatic detection of early glaucoma from visual fields[J]. PLoS One, 2018, 13(11): e0206081.
19、Li F, Song D, Chen H, et al. Development and clinical deployment of a smartphone-based visual field deep learning system for glaucoma detection[J]. NPJ Digit Med, 2020, 3: 123.Li F, Song D, Chen H, et al. Development and clinical deployment of a smartphone-based visual field deep learning system for glaucoma detection[J]. NPJ Digit Med, 2020, 3: 123.
20、Wu X, Liu L, Zhao L, et al. Application of artificial intelligence in anterior segment ophthalmic diseases: diversity and standardization[J]. Ann Transl Med, 2020, 8(11): 714.Wu X, Liu L, Zhao L, et al. Application of artificial intelligence in anterior segment ophthalmic diseases: diversity and standardization[J]. Ann Transl Med, 2020, 8(11): 714.
21、Fu H, Li F, Sun X, et al. AGE challenge: angle closure glaucoma evaluation in anterior segment optical coherence tomography[J]. Med Image Anal, 2020, 66: 101798.Fu H, Li F, Sun X, et al. AGE challenge: angle closure glaucoma evaluation in anterior segment optical coherence tomography[J]. Med Image Anal, 2020, 66: 101798.
22、Heneghan C, Flynn J, O'Keefe M, et al. Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis[J]. Med Image Anal, 2002, 6(4): 407-429.Heneghan C, Flynn J, O'Keefe M, et al. Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis[J]. Med Image Anal, 2002, 6(4): 407-429.
23、Rabinowitz MP, Grunwald JE, Karp KA, et al. Progression to severe retinopathy predicted by retinal vessel diameter between 31 and 34 weeks of postconception age[J]. Arch Ophthalmol, 2007, 125(11): 1495-1500.Rabinowitz MP, Grunwald JE, Karp KA, et al. Progression to severe retinopathy predicted by retinal vessel diameter between 31 and 34 weeks of postconception age[J]. Arch Ophthalmol, 2007, 125(11): 1495-1500.
24、Wallace DK, Zhao Z, Freedman SF. A pilot study using “ROPtool” to quantify plus disease in retinopathy of prematurity[J]. J AAPOS, 2007, 11(4): 381-387.Wallace DK, Zhao Z, Freedman SF. A pilot study using “ROPtool” to quantify plus disease in retinopathy of prematurity[J]. J AAPOS, 2007, 11(4): 381-387.
25、Gelman R, Martinez-Perez ME, Vanderveen DK, et al. Diagnosis of plus disease in retinopathy of prematurity using Retinal Image multiScale Analysis[J]. Invest Ophthalmol Vis Sci, 2005, 46(12): 4734-4738.Gelman R, Martinez-Perez ME, Vanderveen DK, et al. Diagnosis of plus disease in retinopathy of prematurity using Retinal Image multiScale Analysis[J]. Invest Ophthalmol Vis Sci, 2005, 46(12): 4734-4738.
26、Ataer-Cansizoglu E, Bolon-Canedo V, Campbell JP, et al. Computer-based image analysis for plus disease diagnosis in retinopathy of prematurity: performance of the “i-ROP” system and image features associated with expert diagnosis[J]. Transl Vis Sci Technol, 2015, 4(6): 5.Ataer-Cansizoglu E, Bolon-Canedo V, Campbell JP, et al. Computer-based image analysis for plus disease diagnosis in retinopathy of prematurity: performance of the “i-ROP” system and image features associated with expert diagnosis[J]. Transl Vis Sci Technol, 2015, 4(6): 5.
27、Worrall DE, Wilson CM, Brostow GJ. Automated retinopathy of prematurity case detection with convolutional neural networks[M]//Deep learning and data labeling for medical applications. Cham, Switzerland: Springer International Publishing AG, 2016. Worrall DE, Wilson CM, Brostow GJ. Automated retinopathy of prematurity case detection with convolutional neural networks[M]//Deep learning and data labeling for medical applications. Cham, Switzerland: Springer International Publishing AG, 2016.
28、Scruggs BA, Chan RVP, Kalpathy-Cramer J, et al. Artificial intelligence in retinopathy of prematurity diagnosis[J]. Transl Vis Sci Technol, 2020, 9(2): 5.Scruggs BA, Chan RVP, Kalpathy-Cramer J, et al. Artificial intelligence in retinopathy of prematurity diagnosis[J]. Transl Vis Sci Technol, 2020, 9(2): 5.
29、Brown JM, Campbell JP, Beers A, et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks[J]. JAMA Ophthalmol, 2018, 136(7): 803-810.Brown JM, Campbell JP, Beers A, et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks[J]. JAMA Ophthalmol, 2018, 136(7): 803-810.
30、Wang J, Ju R, Chen Y, et al. Automated retinopathy of prematurity screening using deep neural networks[J]. EBioMedicine, 2018, 35: 361-368.Wang J, Ju R, Chen Y, et al. Automated retinopathy of prematurity screening using deep neural networks[J]. EBioMedicine, 2018, 35: 361-368.
31、岑令平, 吉杰, 林建伟, 等. 眼底疾病人工智能检测平台的开发与应用实践[J]. 人工智能, 2021(3): 56-71. 岑令平, 吉杰, 林建伟, 等. 眼底疾病人工智能检测平台的开发与应用实践[J]. 人工智能, 2021(3): 56-71.
32、 Development and application of artificial intelligence detection platform for fundus diseases[J]. Artificial Intelligence View, 2021(3): 56-71. Development and application of artificial intelligence detection platform for fundus diseases[J]. Artificial Intelligence View, 2021(3): 56-71.
33、Wang J, Ji J, Zhang M, et al. Automated explainable multidimensional deep learning platform of retinal images for retinopathy of prematurity screening[J]. JAMA Netw Open, 2021, 4(5): e218758.Wang J, Ji J, Zhang M, et al. Automated explainable multidimensional deep learning platform of retinal images for retinopathy of prematurity screening[J]. JAMA Netw Open, 2021, 4(5): e218758.
34、董嫱, 张华. Leber先天性黑曚患者临床特征与基因筛查[J]. 转化医学电子杂志, 2017, 4(8): 20-23. 董嫱, 张华. Leber先天性黑曚患者临床特征与基因筛查[J]. 转化医学电子杂志, 2017, 4(8): 20-23.
35、 Clinical characteristics and genetic screening of patients with Leber congenital amaurosis[J]. E-Journal of Translational Medicine, 2017, 4(8): 20-23. Clinical characteristics and genetic screening of patients with Leber congenital amaurosis[J]. E-Journal of Translational Medicine, 2017, 4(8): 20-23.
36、Sumaroka A, Garafalo AV, Semenov EP, et al. Treatment potential for macular cone vision in Leber congenital amaurosis due to CEP290 or NPHP5 mutations: predictions from artificial intelligence[J]. Invest Ophthalmol Vis Sci, 2019, 60(7): 2551-2562.Sumaroka A, Garafalo AV, Semenov EP, et al. Treatment potential for macular cone vision in Leber congenital amaurosis due to CEP290 or NPHP5 mutations: predictions from artificial intelligence[J]. Invest Ophthalmol Vis Sci, 2019, 60(7): 2551-2562.
37、Cai S, Therattil A, Vajzovic L. Recent developments in pediatric retina[J]. Curr Opin Ophthalmol, 2020, 31(3): 155-160.Cai S, Therattil A, Vajzovic L. Recent developments in pediatric retina[J]. Curr Opin Ophthalmol, 2020, 31(3): 155-160.
38、Bouzia Z, Georgiou M, Hull S, et al. GUCY2D-associated Leber congenital amaurosis: a retrospective natural history study in preparation for trials of novel therapies[J]. Am J Ophthalmol, 2020, 210: 59-70.Bouzia Z, Georgiou M, Hull S, et al. GUCY2D-associated Leber congenital amaurosis: a retrospective natural history study in preparation for trials of novel therapies[J]. Am J Ophthalmol, 2020, 210: 59-70.
39、Fahim AT, Bouzia Z, Branham KH, et al. Detailed clinical characterisation, unique features and natural history of autosomal recessive RDH12-associated retinal degeneration[J]. Br J Ophthalmol, 2019, 103(12): 1789-1796.Fahim AT, Bouzia Z, Branham KH, et al. Detailed clinical characterisation, unique features and natural history of autosomal recessive RDH12-associated retinal degeneration[J]. Br J Ophthalmol, 2019, 103(12): 1789-1796.
40、Chai MI, Chai A, Sullivan P. Boundary detection of retinoblastoma tumors with neural networks[J]. Comput Med Imaging Graph, 2001, 25(3): 257-264.Chai MI, Chai A, Sullivan P. Boundary detection of retinoblastoma tumors with neural networks[J]. Comput Med Imaging Graph, 2001, 25(3): 257-264.
41、Yang MS, Hu YJ, Lin KC, et al. Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms[J]. Magn Reson Imaging, 2002, 20(2): 173-179.Yang MS, Hu YJ, Lin KC, et al. Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms[J]. Magn Reson Imaging, 2002, 20(2): 173-179.
42、Lin KC, Yang MS, Liu HC, et al. Generalized Kohonen’s competitive learning algorithms for ophthalmological MR image segmentation[J]. Magn Reson Imaging, 2003, 21(8): 863-870.Lin KC, Yang MS, Liu HC, et al. Generalized Kohonen’s competitive learning algorithms for ophthalmological MR image segmentation[J]. Magn Reson Imaging, 2003, 21(8): 863-870.
43、Hung WL, Chen DH, Yang MS. Suppressed fuzzy-soft learning vector quantization for MRI segmentation[J]. Artif Intell Med, 2011, 52(1): 33-43.Hung WL, Chen DH, Yang MS. Suppressed fuzzy-soft learning vector quantization for MRI segmentation[J]. Artif Intell Med, 2011, 52(1): 33-43.
44、江萍, 罗彤, 莫纯坚, 等. 智能化斜弱视检查治疗仪治疗儿童弱视216例[J]. 国际眼科杂志, 2005, 5(2): 395-397. 江萍, 罗彤, 莫纯坚, 等. 智能化斜弱视检查治疗仪治疗儿童弱视216例[J]. 国际眼科杂志, 2005, 5(2): 395-397.
45、 Intelligentized strabismus and amblyopia therapeutic apparatus for 216 cases of children’s amblyopia[J]. International Journal of Ophthalmology, 2005, 5(2): 395-397. Intelligentized strabismus and amblyopia therapeutic apparatus for 216 cases of children’s amblyopia[J]. International Journal of Ophthalmology, 2005, 5(2): 395-397.
46、Chen Z, Fu H, Lo WL, et al. Strabismus recognition using eye-tracking data and convolutional neural networks[J]. J Healthc Eng, 2018, 2018: 7692198.Chen Z, Fu H, Lo WL, et al. Strabismus recognition using eye-tracking data and convolutional neural networks[J]. J Healthc Eng, 2018, 2018: 7692198.
47、Gramatikov BI. Detecting central fixation by means of artificial neural networks in a pediatric vision screener using retinal birefringence scanning[J]. Biomed Eng Online, 2017, 16(1): 52.Gramatikov BI. Detecting central fixation by means of artificial neural networks in a pediatric vision screener using retinal birefringence scanning[J]. Biomed Eng Online, 2017, 16(1): 52.
48、Lu J, Fan Z, Zheng C, et al. Automated strabismus detection for telemedicine applications[J/OL]. [2018-09-09]. https://arxiv.org/abs/1809.02940.Lu J, Fan Z, Zheng C, et al. Automated strabismus detection for telemedicine applications[J/OL]. [2018-09-09]. https://arxiv.org/abs/1809.02940.
49、Van Eenwyk J, Agah A, Giangiacomo J, et al. Artificial intelligence techniques for automatic screening of amblyogenic factors[J]. Trans Am Ophthalmol Soc, 2008, 106: 64-73.Van Eenwyk J, Agah A, Giangiacomo J, et al. Artificial intelligence techniques for automatic screening of amblyogenic factors[J]. Trans Am Ophthalmol Soc, 2008, 106: 64-73.
50、Long E, Liu Z, Xiang Y, et al. Discrimination of the behavioural dynamics of visually impaired infants via deep learning[J]. Nat Biomed Eng, 2019, 3(11): 860-869.Long E, Liu Z, Xiang Y, et al. Discrimination of the behavioural dynamics of visually impaired infants via deep learning[J]. Nat Biomed Eng, 2019, 3(11): 860-869.
51、Pueyo V, Pérez-Roche T, Prieto E, et al. Development of a system based on artificial intelligence to identify visual problems in children: study protocol of the TrackAI project[J]. BMJ Open, 2020, 10(2): e033139.Pueyo V, Pérez-Roche T, Prieto E, et al. Development of a system based on artificial intelligence to identify visual problems in children: study protocol of the TrackAI project[J]. BMJ Open, 2020, 10(2): e033139.
52、赵乾, 沈琳琳, 赖铭莹. 基于机器学习的人工智能技术在眼科中的应用进展[J]. 国际眼科杂志, 2018, 18(9): 1630-1634. 赵乾, 沈琳琳, 赖铭莹. 基于机器学习的人工智能技术在眼科中的应用进展[J]. 国际眼科杂志, 2018, 18(9): 1630-1634.
53、 Application progress in ophthalmology using artificial intelligence based on machine learning[J]. International Eye Science, 2018, 18(9): 1630-1634. Application progress in ophthalmology using artificial intelligence based on machine learning[J]. International Eye Science, 2018, 18(9): 1630-1634.
54、何明光, 刘驰, 李治玺. 人工智能在眼科真实临床场景的应用: 机遇和挑战[J]. 山东大学学报(医学版), 2020, 58(11): 1-10. 何明光, 刘驰, 李治玺. 人工智能在眼科真实临床场景的应用: 机遇和挑战[J]. 山东大学学报(医学版), 2020, 58(11): 1-10.
55、 Applying artificial intelligence in ophthalmic real-world practice: opportunities and challenges[J]. Journal of Shandong University. Health Sciences, 2020, 58(11): 1-10. Applying artificial intelligence in ophthalmic real-world practice: opportunities and challenges[J]. Journal of Shandong University. Health Sciences, 2020, 58(11): 1-10.