您的位置: 首页 > 2023年7月 第38卷 第7期 > 文字全文
2023年7月 第38卷 第7期11
目录

大麻二酚在眼部疾病中的应用前景

The application prospect of cannabidiol in eye diseases

来源期刊: 眼科学报 | 2023年7月 第38卷 第7期 497-503 发布时间: 收稿时间:2023/9/6 16:52:55 阅读量:3378
作者:
关键词:
大麻二酚眼部疾病临床应用
cannabidiol eye disease clinical application
DOI:
10.12419/2306150003
大麻二酚(Cannabidiol,CBD)为大麻提取物中的一种非成瘾性活性成分,是目前研究最热门的植物源性大麻素之一。内源性大麻素系统(endocannabinoid system,ECS)在眼表和视网膜中的研究也已经取得显著进展。CBD可以广泛存在于整个眼球,且其分布和功能具有组织特异性。近年来研究发现CBD具有良好的抗炎、抗损伤、降低眼压及神经保护作用。该文详细介绍了CBD在眼部疾病中的研究进展,以及其对各种眼部疾病的治疗潜力。此外,还讨论了CBD在临床眼科治疗中的应用面临的挑战和未来的发展方向。
Cannabidiol(CBD), a non-addictive active ingredient in cannabis extract, is one of the most popular plant-derived cannabinoids. The study on the endoenuous cannabionoid system (ESC) has made significant progress in the ocular surface and retina. CBD exists extensively in the eyeball, and its distrution and functions of anti-inflammatory,antiinjury, reducing intraocular pressure, and neuroprotective effects have been found. This article introduces the research progress in CBD in eye diseases and the therapeutic potential of cannabidiol for various eye diseases in detailed.Furthermore, the challenges and prospect for the application of CBD in clinical ophthalmology were discussed.
大麻作为一种古老的药用植物,其茎、花、叶和种子等均具有实用价值,用途十分广泛,并且大麻及其制品曾广泛应用于人们的生产生活当中[1]。目前已知的天然大麻素有70余种,其中Δ9 -四氢大麻酚(Δ9-tetrahydrocannabinol,THC)和大麻二酚(Cannabidiol,CBD)是大麻植株里含量最高的也是最常见的两种大麻素,也是最常见的。然而,多年来,大多数与大麻衍生化学物质相关的研究工作都集中在THC。与THC相比,CBD不产生精神活性[2],这突出了CBD用于临床药物开发的潜力。
近年来,CBD的化学、药理学及各种分子靶点,包括大麻素受体和内源性大麻素系统(endocannabinoid system,ECS),都已被广泛研究。ECS是一种内源性脂质信号系统,该系统包括内源性大麻素、参与其合成和代谢的酶以及大麻素受体,其中大麻素受体分为大麻素受体1(cannabinoidreceptor 1,CB1R)和大麻素受体2(cannabinoidreceptor 2,CB2R)。CB1R在中枢和外周神经系统中广泛表达,CB1R的激活能调节神经递质的释放。CB2R在免疫细胞上高度表达,其激活具有抗炎作用,可以减少促炎介质的产生和白细胞的聚集减少。研究表明,增强ECS激活的药物,包括CB1R和CB2R的激活,已在疼痛和炎症的实验模型中显示出疗效[3-4]
目前已有大量文献证明CBD具有广泛的治疗潜力,包括治疗癌症[5]、炎症性疾病[6]、神经退行性疾病[7]和精神疾病[8]。另外,随着CBD在眼部的研究不断深入,其抗炎、抗氧化和神经保护等作用也将为眼部疾病治疗提供新的思路和手段。因此,本文就CBD在眼部疾病的应用前景做一综述,为CBD的药用研发提供理论基础。

1 CBD在各种眼部疾病中的治疗潜力

1.1 角膜炎症

角膜是一种薄而无血管的组织,受感觉神经支配。当因感染、手术或外伤引起角膜损伤时,可发展为以痛觉过敏、慢性、衰弱性疼痛和炎症为特征的角膜神经性疼痛(corneal neuropathic pain,CNP)[9]。另外,角膜损伤也会导致炎症反应,从而导致促炎细胞因子的产生、白细胞的聚集、产生疼痛的神经肽释放和角膜新生血管生成[9]。目前用于眼痛、炎症和CNP的治疗药物包括外用糖皮质激素、三环类抗抑郁药、γ-氨基丁酸类药物和阿片类药物。然而,这些药物往往不能提供足够的疼痛缓解,并伴有不良反应[10]。因此,迫切需要能够减轻CNP相关疼痛和症状的新疗法。
有研究报道角膜中存在大麻素受体[11],可以在角膜上皮和内皮中检测到CB1R,当角膜受损伤后角膜上皮细胞中CB2R表达上调[12]。研究发现[13],CBD在角膜痛觉过敏的小鼠模型中具有抗痛觉和抗炎作用。实验表明局部应用植物大麻素Δ8THC和CBD以及大麻素衍生物HU-308降低了角膜痛觉敏感性,并且减轻了角膜上皮浅表化学损伤引起的中性粒细胞浸润。另外,这些大麻素的作用是由不同的受体介导的,包括CB1R、CB2R 以及 5-HT1A受体。所以,这些大麻素作为单一药物或组合使用时,可能是治疗角膜表面损伤引起的眼痛和炎症的有效药物。这项研究证明了CBD可以作为角膜疼痛和角膜炎症的潜在治疗方法。然而,目前关于CBD治疗由眼表损伤引起的角膜疼痛和炎症中的相关研究比较少,还需要后续的进一步基础研究。

1.2 糖尿病视网膜病变

糖尿病视网膜病变(diabetic retinopathy,DR)是成年人视力丧失的主要原因之一。其特征为视网膜血管渗漏导致视物变形,血-视网膜屏障(blood-retinal barrier,BRB)破坏导致黄斑水肿和视网膜新生血管的生成,视力进一步丧失[14]。研究表明视网膜神经退行性病变是DR的一个重要组成部分,由于视网膜内神经节细胞的死亡,会导致视觉功能的永久性损害[15]
目前DR的治疗方法包括视网膜激光光凝、玻璃体视网膜手术和玻璃体腔内注射抗血管内皮生长因子(vascular endothelial growth factor,VEGF)。激光光凝是目前DR的推荐治疗方法,然而,激光光凝与神经组织死亡有关,因此需要对DR进行非侵入性治疗。另外,玻璃体视网膜手术,常伴有术后并发症,如眼压升高、眼内炎和白内障形成[16]。目前已有研究证实VEGF在增殖期DR中起着重要作用[17],但抗VEGF治疗仅对缺血引起的DR中新生血管有作用,并且该治疗还具有一些眼部的不良反应,如视网膜萎缩、视网膜色素上皮撕裂等[18]。综上所述,迄今为止还没有治疗DR神经退行性的方法[19]。所以,为了保护视力和防止缺血引起的视网膜病变,新生血管、神经退行性病变和炎症三个部分必须都得到解决。
近年来,有关ECS参与调节眼部疼痛和炎症的发现,为靶向大麻素受体系统(CB1和CB2)治疗眼部炎症病症开辟了新的途径[20]。有研究者通过免疫组化研究评估了CB1R定位于许多物种视网膜中的感光细胞、双极细胞和神经节细胞[21]。另外,也有研究证实CB2RmRNA在成年大鼠的视网膜以及人视网膜色素上皮细胞(mRNA和蛋白)中均有表达[22]。目前已有研究证明CBD可以通过阻断活性氧和肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)的形成以及p38 MAP激酶的激活来减少视网膜炎症[23]。另外,它还可以通过抑制大鼠视网膜小胶质细胞中的腺苷再摄取来发挥抗炎活性[24]。因此,CBD的抗炎特性提示其可能成为DR诱发炎症的治疗选择。
Azza等[23]在DR动物模型中发现,CBD治疗可以降低氧化应激;降低TNF-α、VEGF和细胞间黏附分子-1(intercellular adhesion molecule-1,ICAM-1)的水平;防止糖尿病视网膜中的视网膜细胞死亡和血管通透性过高;并阻止p38MAP激酶的激活。此研究首次通过CBD的抗氧化和抗炎作用证明了CBD对早期糖尿病小鼠中的神经保护和BRB保护作用。还有研究报道,已在多种动物的视网膜中发现花生四烯醇乙醇酰胺(anandamide,AEA)和2-花生四烯醇甘油(2-arachidonoyl glycerol,2-AG)[25]。在AMPA(α-氨基-3-羟基-5-甲基-4-异恶唑丙酸)兴奋毒性模型中,研究者发现内源性大麻素AEA通过CB1R信号通路参与视网膜的神经保护作用,同时证实CB1R参与了2-AG对AMPA兴奋性毒性小鼠视网膜的神经保护作用[26]。在链脲佐菌素诱导的DR大鼠模型中,CBD也被证明可以降低神经毒性、氧化应激、炎症标志物表达、视网膜细胞死亡和血视网膜屏障破坏,并且这些作用是通过抑制p38 MAP激酶介导的[15]。这些模型都为CBD在不同视网膜疾病模型中的神经保护作用提供了强有力的证据。
综上所述,CBD能够减少活性氧的形成,抑制VEGF、ICAM-1和TNF-α的表达,并阻止p38 MAP激酶的激活。这些发现均表明CBD是一种潜在的治疗DR的药物,能够抑制炎症、视网膜神经元细胞死亡和保护血视网膜屏障。

1.3 青光眼

青光眼是世界范围内导致不可逆失明的主要疾病之一,以视神经进行性变性为特征,并伴有视网膜神经节细胞的丧失。其中,眼压升高是主要的危险因素[27]。由于人眼主要通过睫状体分泌房水再经小梁网和葡萄膜通道流出的动态平衡来调节眼压,因此,临床上一般通过减少房水形成或增加房水流出(通过小梁网或葡萄膜途径)来降低眼压。目前用于青光眼的治疗药物包括前列腺素类似物、β-肾上腺素能受体拮抗剂、α-肾上腺素能受体激动剂、碳酸酐酶抑制剂、胆碱能激动剂,以及最近的Rho激酶抑制剂等[28],通过以上药物的单独或联合使用进行治疗。然而,慢性青光眼患者应用降眼压药物的时间较长,其中一些药物长期应用具有不良反应,并可产生耐受性。因此,对于上述药物或药物组合治疗反应不佳的患者,或对现有药物产生耐受性的患者,需要新的药物控制眼压,防止发生与青光眼相关的视神经损伤和视力丧失[29]
有关吸食大麻降低眼压的观察最早出现在50多年前,Hepler和Frank[30]指出了大麻素在眼部生理和疾病中的功能意义。他们指出,吸食大麻的受试者眼压较低。此后,多项研究证明了各种植物大麻素,包括Δ9-THC和CBD,均能够降低眼压[31-35],这表明它们可能对青光眼具有治疗作用。然而,Δ9-THC具有精神药物的不良反应,这限制了其在青光眼的临床应用,而CBD是非精神药物,所以其在降眼压方面具有更大的潜力[36-37]
大麻素受体的降眼压机制起初被认为是通过中枢神经系统起作用的,直至在睫状体和小梁网中发现该受体,才使人们意识到,其降眼压的作用位点在眼部,即大麻素通过激活位于小梁网细胞、睫状体的大麻素受体,导致下游信号通路的激活,从而引起房水的外流和眼压的改变。有研究报道,大麻素样药物会增加无色素睫状上皮的环氧酶-2和基质金属蛋白酶(matrix metalloproteinases,MMP)的表达[38],而无色素睫状上皮是负责房水分泌的,所以提示大麻素与房水分泌有关。还有研究显示,CB2受体激动剂JWH015可以通过影响Rac1-GTPase酶的活性,调节小梁网细胞骨架肌动蛋白的移行,增加房水外流[39]
Alyssa等[32]使用培养的猪小梁网细胞,研究CBD对小梁网细胞的收缩性、肌球蛋白轻链和肌球蛋白磷酸酶靶向亚基1磷酸化和RhoA活化的影响。发现用1 μmmol/LCBD处理小梁网细胞可降低小梁网细胞介导的胶原蛋白收缩,抑制肌球蛋白轻链和肌球蛋白磷酸酶靶向亚基1磷酸化并降低RhoA活化。这项研究首次发现,CBD可作为降眼压的潜在治疗剂,CBD可以增强房水流出并改变小梁网细胞信号传导。还有研究发现[40],在荷兰大兔模型中使用以Carbopol(®)940聚合物为黏合剂、采用热均质-探针超声法制备的CBD纳米乳液,会显著降低治疗眼的眼压,这个结果也支持进一步探索CBD作为降眼压的潜在活性药物。
目前,Δ9-THC已有充分的文献记载,并一致显示可降低眼压。然而,CBD对眼压的影响还有争议[35]。迄今为止,关于CBD对眼压的影响,已经发表了10篇独立报道: 4篇报道表明CBD对眼压没有影响[41-44],4篇报道表明CBD降低眼压[33,45-47],2篇报道显示CBD引起眼压升高[34-35]。另外,最近的研究表明,Δ9-THC的眼压降低作用是由CB1和GPR18受体的联合激活介导的,而CBD的作用相反,会导致眼压升高[48]。虽然眼压降低的幅度似乎与剂量有关,但未观察到作用持续时间与剂量之间的关系。此外,反复给药是否会导致生理耐受及其降低眼压的治疗效果也尚不清楚。综上所述,文献并没有明确地表明CBD对眼压的影响。

2 CBD作为局部眼用制剂的挑战

CBD作为眼部治疗剂的实际应用还面临着一些挑战,包括低生物利用度、局部给药困难和作用时间短。

2.1 生物利用度

大麻素的生物利用度个体差异大,影响因素包括体重、年龄、性别、健康状况和生理状态[49]。虽然FDA批准含有CBD的药物可以口服[50],但由于广泛的肝脏首过效应会使CBD的口服生物利用度降至13%~19%[31],因此需要大剂量使用才能达到治疗效果。然而,高剂量使用的后果是不良反应的增加[51-52]。CBD的不良反应包括嗜睡、口干、食欲不振、恶心和胃肠道问题,其中最严重的不良反应为肝功能异常(转氨酶升高)[53]
导致CBD生物利用度差的另一个主要因素就是它的疏水性,CBD的化学结构包含芳香环和脂肪侧链,这使其成为高度疏水分子,限制了其在角膜上的渗透性[54]

2.2 给药途径

大麻素的药代动力学特征随着给药途径的不同而不同。眼科疾病的治疗方法通常是口服或局部给药。然而,由于CBD在肠道和肝脏较高的首关消除,导致进入全身血液循环内的药物量较少,而且CBD的血浆蛋白结合率较高(>99%),会导致血浆中游离态的有效药物量减少[55]。因此,需要局部应用CBD。
然而,开发眼局部给药系统是一项艰巨的任务。在大多数研究中,轻质矿物油一直是局部给药大麻素的首选载体[20]。但轻质矿物油存在诸多问题,如水不溶性和局部毒性。水溶性对眼通透性很重要,因为眼睛经常被泪膜清洗和滋润。但是轻质矿物油是不溶于水的,这极大地限制了药物角膜通透性。此外,轻质矿物油还具有局部毒性,表现为眼睑肿胀、烧灼感和结膜充血。因此迫切需要一种合适的载体,能够实现以治疗剂量局部给药大麻素。

2.3 作用时间

CBD作为眼部治疗药物的另一个缺点是作用时间短。1980年第一项关于CBD与青光眼的安慰剂对照研究中,研究对象是18例青光眼患者。这项研究表明,在吸食18 mg CBD后,平均眼压从28 mmHg(1 mmHg=0.133 kPa)降至22 mmHg,同时发现眼压降低的效果持续不到4 h[56]。在另一项研究中,CBD需要通过小型泵持续输注才能使眼压降低[45]。作用时间短意味着CBD需要在一天中多次应用以保持治疗效果。
然而,频繁给药会使患者的依从性降低。相比之下,每天应用一次的患者依从性更高。

3 未来的发展方向

大麻素在眼部生理和疾病中的功能意义已经报道了几十年。到目前为止,CBD在青光眼、DR和角膜损伤中的治疗潜力已被广泛研究。考虑到其抗炎、抗氧化和神经保护的特性,将来还可以继续探索CBD在其他眼部疾病(如葡萄膜炎和慢性泪囊炎)方面的治疗潜力。为提供有效的治疗、了解CBD在眼部疾病治疗中的作用机制,保证其作为眼部治疗剂的有效和安全性十分重要,例如研究CBD的药代动力学特性,考虑其在急性和长期使用后对人类眼部结构和功能特征的潜在影响,确定其在长期使用中的药理疗效。在未来,让CBD成为治疗许多眼部疾病的新方法,还必须解决有效的治疗剂量和延长局部给药作用时间的难题。

4 总结与展望

综上所述,大量研究证实了CBD作为天然大麻素提取物在治疗多种眼科疾病、延缓疾病进展以及提高患者生活质量等方面的积极作用,但CBD在治疗眼科相关疾病上的机制尚未清楚阐明,其能否作为一种安全、有效的新型药物还需要进一步的深入研究。二十余年前,大麻素受体在眼部被发现;十余年前,大麻素受体在视网膜的研究结果开始出现在期刊上;随后非精神活性CBD的抗炎、抗氧化及神经保护等作用引起眼科医生的极大兴趣。遗憾的是,目前关于CBD的试验仅限于欧美国家,国内仍缺乏CBD在眼部疾病治疗的相关研究,这也需要国家政策的大力支持和科研机构的积极探索。

利益冲突

所有作者均声明不存在利益冲突。

开放获取声明

本文适用于知识共享许可协议(Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。详情请访问:https://creativecommons.org/licenses/by-nc-nd/4.0/
1、周静莹, 张伟. 大麻二酚制备的研究进展[ J]. 中国民族民间医药, 2022, 31(2): 72-79.
Zhou JY, Zhang W. Research progress in the preparation of cannabidiol[ J]. Chin J Ethnomedicine Ethnopharmacy, 2022, 31(2): 72-79.
周静莹, 张伟. 大麻二酚制备的研究进展[ J]. 中国民族民间医药, 2022, 31(2): 72-79.
Zhou JY, Zhang W. Research progress in the preparation of cannabidiol[ J]. Chin J Ethnomedicine Ethnopharmacy, 2022, 31(2): 72-79.
2、Izzo AA, Borrelli F, Capasso R , et al. Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb[ J]. Trends Pharmacol Sci, 2009, 30(10): 515-527.Izzo AA, Borrelli F, Capasso R , et al. Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb[ J]. Trends Pharmacol Sci, 2009, 30(10): 515-527.
3、Maldonado%20R%2C%20Ba%C3%B1os%20JE%2C%20Caba%C3%B1ero%20D.%20The%20endocannabinoid%20system%20%0Aand%20neuropathic%20pain%5B%20J%5D.%20Pain%2C%202016%2C%20157(Suppl%201)%3AS23-S32.Maldonado%20R%2C%20Ba%C3%B1os%20JE%2C%20Caba%C3%B1ero%20D.%20The%20endocannabinoid%20system%20%0Aand%20neuropathic%20pain%5B%20J%5D.%20Pain%2C%202016%2C%20157(Suppl%201)%3AS23-S32.
4、Huang WJ, Chen WW, Zhang X. Endocannabinoid system: role in depression, reward and pain control (Review)[ J]. Mol Med Rep, 2016, 14(4): 2899-2903.Huang WJ, Chen WW, Zhang X. Endocannabinoid system: role in depression, reward and pain control (Review)[ J]. Mol Med Rep, 2016, 14(4): 2899-2903.
5、Massi P, Solinas M, Cinquina V, et al. Cannabidiol as potential anticancer drug[ J]. Br J Clin Pharmacol, 2013, 75(2): 303-312.Massi P, Solinas M, Cinquina V, et al. Cannabidiol as potential anticancer drug[ J]. Br J Clin Pharmacol, 2013, 75(2): 303-312.
6、Esposito G, Filippis DD, Cirillo C, et al. Cannabidiol in inflammatory bowel diseases: a brief overview[ J]. Phytother Res, 2013, 27(5): 633- 636.Esposito G, Filippis DD, Cirillo C, et al. Cannabidiol in inflammatory bowel diseases: a brief overview[ J]. Phytother Res, 2013, 27(5): 633- 636.
7、Fern%C3%A1ndez-Ruiz%20J%2C%20Sagredo%20O%2C%20Pazos%20MR%20%2C%20et%20al.%20Cannabidiol%20for%20%0Aneurodegenerative%20disorders%3A%20important%20new%20clinical%20applications%20for%20%0Athis%20phytocannabinoid%3F%5B%20J%5D.%20Br%20J%20Clin%20Pharmacol%2C%202013%2C%2075(2)%3A%20323-333.Fern%C3%A1ndez-Ruiz%20J%2C%20Sagredo%20O%2C%20Pazos%20MR%20%2C%20et%20al.%20Cannabidiol%20for%20%0Aneurodegenerative%20disorders%3A%20important%20new%20clinical%20applications%20for%20%0Athis%20phytocannabinoid%3F%5B%20J%5D.%20Br%20J%20Clin%20Pharmacol%2C%202013%2C%2075(2)%3A%20323-333.
8、Zuardi AW, Crippa JA, Hallak JE, et al. A critical review of the antipsychotic effects of cannabidiol: 30 years of a translational investigation[ J]. Curr Pharm Des, 2012, 18(32): 5131-5140.Zuardi AW, Crippa JA, Hallak JE, et al. A critical review of the antipsychotic effects of cannabidiol: 30 years of a translational investigation[ J]. Curr Pharm Des, 2012, 18(32): 5131-5140.
9、Belmonte%20C%2C%20Acosta%20MC%2C%20Merayo-Lloves%20J%2C%20et%20al.%20What%20causes%20eye%20%0Apain%3F%5B%20J%5D.%20Curr%20Ophthalmol%20Rep%2C%202015%2C%203(2)%3A%20111-121.Belmonte%20C%2C%20Acosta%20MC%2C%20Merayo-Lloves%20J%2C%20et%20al.%20What%20causes%20eye%20%0Apain%3F%5B%20J%5D.%20Curr%20Ophthalmol%20Rep%2C%202015%2C%203(2)%3A%20111-121.
10、Faktorovich EG, Melwani K . Efficacy and safety of pain relief medications after photorefractive keratectomy: review of prospective randomized trials[ J]. J Cataract Refract Surg, 2014, 40(10): 1716- 1730.Faktorovich EG, Melwani K . Efficacy and safety of pain relief medications after photorefractive keratectomy: review of prospective randomized trials[ J]. J Cataract Refract Surg, 2014, 40(10): 1716- 1730.
11、Straiker AJ, Maguire G, Mackie K, et al. Localization of cannabinoid CB1 receptors in the human anterior eye and retina[ J]. Invest Ophthalmol Vis Sci, 1999, 40(10): 2442-2448.Straiker AJ, Maguire G, Mackie K, et al. Localization of cannabinoid CB1 receptors in the human anterior eye and retina[ J]. Invest Ophthalmol Vis Sci, 1999, 40(10): 2442-2448.
12、Murataeva N, Miller S, Dhopeshwarkar A, et al. Cannabinoid CB2R receptors are upregulated with corneal injury and regulate the course of corneal wound healing[ J]. Exp Eye Res, 2019, 182: 74-84.Murataeva N, Miller S, Dhopeshwarkar A, et al. Cannabinoid CB2R receptors are upregulated with corneal injury and regulate the course of corneal wound healing[ J]. Exp Eye Res, 2019, 182: 74-84.
13、Thapa D, Cairns EA, Szczesniak AM, et al. The cannabinoids Δ8THC, CBD, and HU-308 act via distinct receptors to reduce corneal pain and inflammation[ J]. Cannabis Cannabinoid Res, 2018, 3(1): 11-20.Thapa D, Cairns EA, Szczesniak AM, et al. The cannabinoids Δ8THC, CBD, and HU-308 act via distinct receptors to reduce corneal pain and inflammation[ J]. Cannabis Cannabinoid Res, 2018, 3(1): 11-20.
14、Neely KA, Gardner TW. Ocular neovascularization: clarifying complex interactions[ J]. Am J Pathol, 1998, 153(3): 665-670.Neely KA, Gardner TW. Ocular neovascularization: clarifying complex interactions[ J]. Am J Pathol, 1998, 153(3): 665-670.
15、El-Remessy AB, Al-Shabrawey M, Khalifa Y, et al. Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes[ J]. Am J Pathol, 2006, 168(1): 235-244.El-Remessy AB, Al-Shabrawey M, Khalifa Y, et al. Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes[ J]. Am J Pathol, 2006, 168(1): 235-244.
16、Belin PJ, Parke DW 3rd. Complications of vitreoretinal surgery[ J]. Curr Opin Ophthalmol, 2020, 31(3):167-173.Belin PJ, Parke DW 3rd. Complications of vitreoretinal surgery[ J]. Curr Opin Ophthalmol, 2020, 31(3):167-173.
17、Schwartz SG, Flynn HW Jr, Scott IU. Emerging drugs for diabetic macular edema[ J]. Expert Opin Emerg Drugs, 2014, 19(3): 397-405.Schwartz SG, Flynn HW Jr, Scott IU. Emerging drugs for diabetic macular edema[ J]. Expert Opin Emerg Drugs, 2014, 19(3): 397-405.
18、Schmid%20MK%2C%20Bachmann%20LM%2C%20F%C3%A4s%20L%2C%20et%20al.%20Efficacy%20and%20adverse%20events%20%0Aof%20aflibercept%2C%20ranibizumab%20and%20bevacizumab%20in%20age-related%20macular%20%0Adegeneration%3A%20a%20trade-off%20analysis%5B%20J%5D.%20Br%20J%20Ophthalmol%2C%202015%2C%2099(2)%3A%20%0A141-146.Schmid%20MK%2C%20Bachmann%20LM%2C%20F%C3%A4s%20L%2C%20et%20al.%20Efficacy%20and%20adverse%20events%20%0Aof%20aflibercept%2C%20ranibizumab%20and%20bevacizumab%20in%20age-related%20macular%20%0Adegeneration%3A%20a%20trade-off%20analysis%5B%20J%5D.%20Br%20J%20Ophthalmol%2C%202015%2C%2099(2)%3A%20%0A141-146.
19、Vasilaki A, Thermos K. Somatostatin analogues as therapeutics in retinal disease[ J]. Pharmacol Ther, 2009, 122(3): 324-333.Vasilaki A, Thermos K. Somatostatin analogues as therapeutics in retinal disease[ J]. Pharmacol Ther, 2009, 122(3): 324-333.
20、Thapa D, Cairns EA, Szczesniak AM, et al. The cannabinoids Δ8THC, CBD, and HU-308 act via distinct receptors to reduce corneal pain and inflammation[ J]. Cannabis Cannabinoid Res, 2018, 3(1): 11-20.Thapa D, Cairns EA, Szczesniak AM, et al. The cannabinoids Δ8THC, CBD, and HU-308 act via distinct receptors to reduce corneal pain and inflammation[ J]. Cannabis Cannabinoid Res, 2018, 3(1): 11-20.
21、Yazulla S, Studholme KM, McIntosh HH, et al. Immunocytochemical localization of cannabinoid CB1 receptor and fatty acid amide hydrolase in rat retina[ J]. J Comp Neurol, 1999, 415(1): 80-90.Yazulla S, Studholme KM, McIntosh HH, et al. Immunocytochemical localization of cannabinoid CB1 receptor and fatty acid amide hydrolase in rat retina[ J]. J Comp Neurol, 1999, 415(1): 80-90.
22、Wei Y, Wang X, Wang L. Presence and regulation of cannabinoid receptors in human retinal pigment epithelial cells[ J]. Mol Vis, 2009, 15: 1243-1251.Wei Y, Wang X, Wang L. Presence and regulation of cannabinoid receptors in human retinal pigment epithelial cells[ J]. Mol Vis, 2009, 15: 1243-1251.
23、El-Remessy AB, Al-Shabrawey M, Khalifa Y, et al. Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes[ J]. Am J Pathol, 2006, 168(1): 235-244.El-Remessy AB, Al-Shabrawey M, Khalifa Y, et al. Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes[ J]. Am J Pathol, 2006, 168(1): 235-244.
24、Liou GI, Auchampach JA, Hillard CJ, et al. Mediation of cannabidiol anti-inflammation in the retina by equilibrative nucleoside transporter and A2A adenosine receptor[ J]. Invest Ophthalmol Vis Sci, 2008, 49(12): 5526-5531.Liou GI, Auchampach JA, Hillard CJ, et al. Mediation of cannabidiol anti-inflammation in the retina by equilibrative nucleoside transporter and A2A adenosine receptor[ J]. Invest Ophthalmol Vis Sci, 2008, 49(12): 5526-5531.
25、Bisogno T, Delton-Vandenbroucke I, Milone A, et al. Biosynthesis and inactivation of N-arachidonoylethanolamine (anandamide) and N-docosahexaenoylethanolamine in bovine retina[ J]. Arch Biochem Biophys, 1999, 370(2): 300-307.Bisogno T, Delton-Vandenbroucke I, Milone A, et al. Biosynthesis and inactivation of N-arachidonoylethanolamine (anandamide) and N-docosahexaenoylethanolamine in bovine retina[ J]. Arch Biochem Biophys, 1999, 370(2): 300-307.
26、Kokona D, Thermos K. Synthetic and endogenous cannabinoids protect retinal neurons from AMPA excitotoxicity invivo, via activation of CB1 receptors: involvement of PI3K/Akt and MEK/ERK signaling pathways[ J]. Exp Eye Res, 2015, 136: 45-58.Kokona D, Thermos K. Synthetic and endogenous cannabinoids protect retinal neurons from AMPA excitotoxicity invivo, via activation of CB1 receptors: involvement of PI3K/Akt and MEK/ERK signaling pathways[ J]. Exp Eye Res, 2015, 136: 45-58.
27、Flaxman SR, Bourne RRA, Resnikoff S, et al. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis[ J]. Lancet Glob Health, 2017, 5(12): e1221-e1234.Flaxman SR, Bourne RRA, Resnikoff S, et al. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis[ J]. Lancet Glob Health, 2017, 5(12): e1221-e1234.
28、Shalaby WS, Shankar V, Razeghinejad R , et al. Current and new pharmacotherapeutic approaches for glaucoma[ J]. Expert Opin Pharmacother, 2020, 21(16): 2027-2040.Shalaby WS, Shankar V, Razeghinejad R , et al. Current and new pharmacotherapeutic approaches for glaucoma[ J]. Expert Opin Pharmacother, 2020, 21(16): 2027-2040.
29、Lu LJ, Tsai JC, Liu J. Novel pharmacologic candidates for treatment of primary open-angle glaucoma[ J]. Yale J Biol Med, 2017, 90(1): 111- 118.Lu LJ, Tsai JC, Liu J. Novel pharmacologic candidates for treatment of primary open-angle glaucoma[ J]. Yale J Biol Med, 2017, 90(1): 111- 118.
30、Hepler RS, Frank IR. Marihuana smoking and intraocular pressure[ J]. JAMA, 1971, 217(10): 1392.Hepler RS, Frank IR. Marihuana smoking and intraocular pressure[ J]. JAMA, 1971, 217(10): 1392.
31、Passani A, Posarelli C, Sframeli AT, et al. Cannabinoids in glaucoma patients: the never-ending story[ J]. J Clin Med, 2020, 9(12): 3978.Passani A, Posarelli C, Sframeli AT, et al. Cannabinoids in glaucoma patients: the never-ending story[ J]. J Clin Med, 2020, 9(12): 3978.
32、Aebersold AS, Song ZH. The effects of cannabidiol on aqueous humor outflow and trabecular meshwork cell signaling[ J]. Cells, 2022, 11(19): 3006.Aebersold AS, Song ZH. The effects of cannabidiol on aqueous humor outflow and trabecular meshwork cell signaling[ J]. Cells, 2022, 11(19): 3006.
33、Keith G, Henry W, Bowman Karen A. A comparison of topical cannabinoids on intraocular pressure[ J]. Exp Eye Res, 1978, 27(2): 239-246.Keith G, Henry W, Bowman Karen A. A comparison of topical cannabinoids on intraocular pressure[ J]. Exp Eye Res, 1978, 27(2): 239-246.
34、Miller S, Daily L, Leishman E, et al. Δ9-tetrahydrocannabinol and cannabidiol differentially regulate intraocular pressure[ J]. Invest Ophthalmol Vis Sci, 2018, 59(15): 5904-5911.Miller S, Daily L, Leishman E, et al. Δ9-tetrahydrocannabinol and cannabidiol differentially regulate intraocular pressure[ J]. Invest Ophthalmol Vis Sci, 2018, 59(15): 5904-5911.
35、Tomida I, Azuara-Blanco A, House H, et al. Effect of sublingual application of cannabinoids on intraocular pressure: a pilot study[ J]. J Glaucoma, 2006, 15(5): 349-353.Tomida I, Azuara-Blanco A, House H, et al. Effect of sublingual application of cannabinoids on intraocular pressure: a pilot study[ J]. J Glaucoma, 2006, 15(5): 349-353.
36、Aebersold A, Duff M, Sloan L, et al. Cannabidiol signaling in the eye and its potential as an ocular therapeutic agent[ J]. Cell Physiol Biochem, 2021, 55(S5): 1-14.Aebersold A, Duff M, Sloan L, et al. Cannabidiol signaling in the eye and its potential as an ocular therapeutic agent[ J]. Cell Physiol Biochem, 2021, 55(S5): 1-14.
37、Passani A, Posarelli C, Sframeli AT, et al. Cannabinoids in glaucoma patients: the never-ending story[ J]. J Clin Med, 2020, 9(12): 3978.Passani A, Posarelli C, Sframeli AT, et al. Cannabinoids in glaucoma patients: the never-ending story[ J]. J Clin Med, 2020, 9(12): 3978.
38、R%C3%B6sch%20S%2C%20Ramer%20R%2C%20Brune%20K%2C%20et%20al.%20R(%2B)-methanandamide%20and%20other%20%0Acannabinoids%20induce%20the%20expression%20of%20cyclooxygenase-2%20and%20matrix%20%0Ametalloproteinases%20in%20human%20nonpigmented%20ciliary%20epithelial%20cells%5B%20J%5D.%20J%20%0APharmacol%20Exp%20Ther%2C%202006%2C%20316(3)%3A%201219-1228.R%C3%B6sch%20S%2C%20Ramer%20R%2C%20Brune%20K%2C%20et%20al.%20R(%2B)-methanandamide%20and%20other%20%0Acannabinoids%20induce%20the%20expression%20of%20cyclooxygenase-2%20and%20matrix%20%0Ametalloproteinases%20in%20human%20nonpigmented%20ciliary%20epithelial%20cells%5B%20J%5D.%20J%20%0APharmacol%20Exp%20Ther%2C%202006%2C%20316(3)%3A%201219-1228.
39、He F, Song ZH. Molecular and cellular changes induced by the activation of CB2 cannabinoid receptors in trabecular meshwork cells[ J]. Mol Vis, 2007, 13: 1348-1356.He F, Song ZH. Molecular and cellular changes induced by the activation of CB2 cannabinoid receptors in trabecular meshwork cells[ J]. Mol Vis, 2007, 13: 1348-1356.
40、Senapati S, Youssef AAA, Sweeney C, et al. Cannabidiol loaded topical ophthalmic nanoemulsion lowers intraocular pressure in normotensive dutch-belted rabbits[ J]. Pharmaceutics, 2022, 14(12): 2585.Senapati S, Youssef AAA, Sweeney C, et al. Cannabidiol loaded topical ophthalmic nanoemulsion lowers intraocular pressure in normotensive dutch-belted rabbits[ J]. Pharmaceutics, 2022, 14(12): 2585.
41、Liu JH, Dacus AC. Central nervous system and peripheral mechanisms in ocular hypotensive effect of cannabinoids[ J]. Arch Ophthalmol, 1987, 105(2):245-248.Liu JH, Dacus AC. Central nervous system and peripheral mechanisms in ocular hypotensive effect of cannabinoids[ J]. Arch Ophthalmol, 1987, 105(2):245-248.
42、Green K, Symonds CM, Oliver NW, Elijah RD. Intraocular pressure following systemic administration of cannabinoids. Curr Eye Res. 1982;2(4):247-253.Green K, Symonds CM, Oliver NW, Elijah RD. Intraocular pressure following systemic administration of cannabinoids. Curr Eye Res. 1982;2(4):247-253.
43、ElSohly MA, Harland EC, Benigni DA, Waller CW. Cannabinoids in glaucoma II: the effect of different cannabinoids on intraocular pressure of the rabbit[ J]. Curr Eye Res, 1984, 3(6): 841-850.ElSohly MA, Harland EC, Benigni DA, Waller CW. Cannabinoids in glaucoma II: the effect of different cannabinoids on intraocular pressure of the rabbit[ J]. Curr Eye Res, 1984, 3(6): 841-850.
44、Waller C, Benigni D, Harland E,et al. Cannabinoids in glaucoma III: the effects of different cannabinoids on intraocular pressure in the monkey. Cannabinoid Chem Pharm Ther Asp, 1984: 871-880.Waller C, Benigni D, Harland E,et al. Cannabinoids in glaucoma III: the effects of different cannabinoids on intraocular pressure in the monkey. Cannabinoid Chem Pharm Ther Asp, 1984: 871-880.
45、Colasanti BK, Brown RE, Craig CR . Ocular hypotension, ocular toxicity, and neurotoxicity in response to marihuana extract and cannabidiol[ J]. Gen Pharmacol, 1984, 15(6): 479-484.Colasanti BK, Brown RE, Craig CR . Ocular hypotension, ocular toxicity, and neurotoxicity in response to marihuana extract and cannabidiol[ J]. Gen Pharmacol, 1984, 15(6): 479-484.
46、Perez-Reyes M, Wagner D, Wall M E, et al. Intravenous administration of cannabinoids and intraocular pressure[ J]. Pharmacol Marihuana, 1976: 829-832.Perez-Reyes M, Wagner D, Wall M E, et al. Intravenous administration of cannabinoids and intraocular pressure[ J]. Pharmacol Marihuana, 1976: 829-832.
47、Senapati S, Youssef AAA, Sweeney C, et al. Cannabidiol loaded topical ophthalmic nanoemulsion lowers intraocular pressure in normotensive dutch-belted rabbits[ J]. Pharmaceutics, 2022, 14(12): 2585.Senapati S, Youssef AAA, Sweeney C, et al. Cannabidiol loaded topical ophthalmic nanoemulsion lowers intraocular pressure in normotensive dutch-belted rabbits[ J]. Pharmaceutics, 2022, 14(12): 2585.
48、Miller S, Daily L, Leishman E, et al. Δ9-tetrahydrocannabinol and cannabidiol differentially regulate intraocular pressure[ J]. Invest Ophthalmol Vis Sci, 2018, 59(15): 5904-5911.Miller S, Daily L, Leishman E, et al. Δ9-tetrahydrocannabinol and cannabidiol differentially regulate intraocular pressure[ J]. Invest Ophthalmol Vis Sci, 2018, 59(15): 5904-5911.
49、Wang MTM, Danesh-Meyer HV. Cannabinoids and the eye[ J]. Surv Ophthalmol, 2021, 66(2): 327-345.Wang MTM, Danesh-Meyer HV. Cannabinoids and the eye[ J]. Surv Ophthalmol, 2021, 66(2): 327-345.
50、US FDA. Highlights of prescribing information[EB/OL]. (2020-05- 14)[2023-06-20]. https://www. accessdata. fda. gov/drugsatfda_docs/ label/2016/125276s107_125472s018lbl. pdfUS FDA. Highlights of prescribing information[EB/OL]. (2020-05- 14)[2023-06-20]. https://www. accessdata. fda. gov/drugsatfda_docs/ label/2016/125276s107_125472s018lbl. pdf
51、Gottschling S, Ayonrinde O, Bhaskar A, et al. Safety considerations in cannabinoid-based medicine[ J]. Int J Gen Med, 2020, 13: 1317-1333.Gottschling S, Ayonrinde O, Bhaskar A, et al. Safety considerations in cannabinoid-based medicine[ J]. Int J Gen Med, 2020, 13: 1317-1333.
52、Britch SC, Babalonis S, Walsh SL. Cannabidiol: pharmacology and therapeutic targets[ J]. Psychopharmacology (Berl), 2021, 238(1): 9-28.Britch SC, Babalonis S, Walsh SL. Cannabidiol: pharmacology and therapeutic targets[ J]. Psychopharmacology (Berl), 2021, 238(1): 9-28.
53、Chesney E, Oliver D, Green A, et al. Adverse effects of cannabidiol: a systematic review and meta-analysis of randomized clinical trials[ J]. Neuropsychopharmacology, 2020, 45(11): 1799-1806.Chesney E, Oliver D, Green A, et al. Adverse effects of cannabidiol: a systematic review and meta-analysis of randomized clinical trials[ J]. Neuropsychopharmacology, 2020, 45(11): 1799-1806.
54、Jay WM, Green K. Multiple-drop study of topically applied 1% delta 9-tetrahydrocannabinol in human eyes[ J]. Arch Ophthalmol, 1983, 101(4): 591-593.Jay WM, Green K. Multiple-drop study of topically applied 1% delta 9-tetrahydrocannabinol in human eyes[ J]. Arch Ophthalmol, 1983, 101(4): 591-593.
55、Bialer M, Johannessen SI, Levy RH, et al. Progress report on new antiepileptic drugs: a summary of the Twelfth Eilat Conference (EILAT XII)[ J]. Epilepsy Res, 2015, 111: 85-141.Bialer M, Johannessen SI, Levy RH, et al. Progress report on new antiepileptic drugs: a summary of the Twelfth Eilat Conference (EILAT XII)[ J]. Epilepsy Res, 2015, 111: 85-141.
56、Merritt JC, Crawford WJ, Alexander PC, et al. Effect of marihuana on intraocular and blood pressure in glaucoma[ J]. Ophthalmology, 1980, 87(3): 222-228.Merritt JC, Crawford WJ, Alexander PC, et al. Effect of marihuana on intraocular and blood pressure in glaucoma[ J]. Ophthalmology, 1980, 87(3): 222-228.
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
中山眼科



中山大学
目录