您的位置: 首页 > 2023年6月 第38卷 第6期 > 文字全文
2023年7月 第38卷 第7期11
目录

外泌体在眼科疾病中的研究进展

Research progress of exosomes in eye diseases

来源期刊: 眼科学报 | 2023年6月 第38卷 第6期 472-477 发布时间:2023-08-01 收稿时间:2023/8/1 15:03:21 阅读量:3706
作者:
关键词:
外泌体眼表疾病眼底疾病青光眼
exosome ocular surface diseases fundus diseases glaucoma
DOI:
10.12419/2212300001
外泌体(exosome)是直径30 nm~150 nm的纳米级囊泡,由脂质双分子层、蛋白质和遗传物质组成。人体内几乎所有类型的细胞都能分泌外泌体。它们在细胞通信、免疫调节、炎症反应和新生血管形成中起着关键作用。目前,外泌体已在肿瘤、心血管及泌尿系统中得到广泛研究。近年来,外泌体在眼科疾病中的作用受到越来越多的关注。外泌体在角膜病变、年龄相关性黄斑病变、糖尿病视网膜病变、青光眼等常见眼科疾病的发生、发展中发挥重要作用。不同间充质干细胞来源的外泌体在眼科疾病中的治疗潜力是当下的热点。间充质干细胞来源的外泌体具有与间充质干细胞相似的抗炎、抗凋亡、神经保护和组织修复的作用,因此外泌体可能是多种眼科疾病无细胞疗法治疗研究的新方向。进一步了解外泌体的生物学特性以及外泌体在眼科疾病的最新研究进展,将为相关眼病的发生机制和防治策略提供参考依据。
Exosomes are nanoscale vesicles with a diameter of 30 nm to 150 nm, which are composed of lipid bilayers, proteins, and genetic material. Almost all types of cells in the human body can secrete exosomes. Tey play key roles in cellular communication, immune regulation, infammatory responses and neovascularization. At present, exosomes have been widely studied in tumors, cardiovascular and urinary systems. In recent years, the role of exosomes in eye diseases has attracted more and more attention. The exosomes play an important role in the occurrence and development of common eye diseases such as keratopathy, age-related macular disease, diabetic retinopathy, glaucoma, etc. Currently it is a hot topic that the therapeutic potential of extracellular vesicles derived from diferent mesenchymal stem cells in eye  diseases. Te exosomes derived from mesenchymal stem cells have anti-infammatory, anti apoptotic, neuroprotective and tissue repairing effects, which are similar to those of mesenchymal stem cells. Thus, exosomes may be a novel direction of research in the treatment of many eye diseases without cell therapy. Further understanding of the biological characteristics of exosomes and the latest research progress of exosomes in common eye diseases will provide reference for the pathogenesis and prevention strategies of related eye diseases.
外泌体(exosome)是由生物体内多种类型的细胞分泌的细胞外囊泡之一,由细胞内的多囊泡体(multivesicular bodies,MVB)与细胞膜融合后以外分泌的形式释放到细胞外,直径约为30~150 nm。1983年研究者在绵羊网织红细胞的细胞培养上清中提取到一种囊泡,发现其中含有乙酰胆碱酯酶、葡萄糖转运体等活性物质,促进红细胞及白细胞的成熟,首次将其命名为外泌体[1]。近年来,研究者们在细胞培养上清及各种体液中均检测到外泌体,参与细胞通信、细胞迁移、血管生成、炎症反应和免疫调节等过程[2-3]。近年来,越来越多的研究表明,外泌体不仅与各种角膜疾病、眼底疾病、青光眼的发病机制密切相关,还在这些疾病的诊断和治疗中发挥重要的作用。本文综述了外泌体的生物学特性和其在眼科疾病中的相关研究。

1 外泌体的生物学特性

1.1 外泌体的结构与功能

细胞外囊泡(ex tracellular vesicles,EVs)是所有包被脂质双层的细胞外结构的总称,根据其形成方式、颗粒大小和功能特性,通常可分为三种亚型:外泌体(直径30~150 nm)、微泡(直径100~1 000 nm)和凋亡小体(直径100~5 000 nm)[4]。外泌体是EVs的最小亚型,其电子显微镜下为双层磷脂分子结构,大多为扁球形或杯状,在体液中多以球形的形式存在[5]。由于上述三者之间的物理和化学性质之间存在重叠,无论是结构还是功能上都无法做到完全分离,越来越多的研究将它们归为一类[6-7]。外泌体的外膜主要由脂质(胆固醇、磷脂和磷脂酰丝氨酸)组成,同时包含多种膜蛋白[8]。外泌体的膜蛋白在其生物学功能中发挥着重要作用,例如四次跨膜蛋白(CD9、CD63、CD81、CD82)、筏蛋白(flotillin)、膜联蛋白(annexins)、整合素蛋白(integrin)。除了各种膜蛋白外,还有许多发挥重要功能的可溶蛋白还存在于外泌体腔中,例如热休克蛋白HSP70、HSP90和Rab GTP酶等[9]。近年来,外泌体包含的遗传物质在细胞间通信和细胞间遗传物质交换中的作用受到了广泛的关注。其中,非编码RNA如微小RNA(microRNA,miRNA)、长链非编码RNA(long non-coding RNA,lncRNA)和环状RNA(circular RNA,circRNA),在许多疾病的发生、发展过程中发挥了重要作用[10]

1.2 外泌体的形成过程

外泌体起源于细胞膜内陷形成的早期内吞体。成熟的晚期内吞体的膜向内萌发,形成腔内小体(intraluminal vesicles,ILV),并转化为MVB。在MVB与细胞膜融合后,ILV被释放到细胞外形成外泌体。外泌体主要通过内体蛋白分选转运复合物途径产生。内体蛋白分选转运复合物由至少2 0种蛋白质组成,它们由从酵母到哺乳动物高度保守的几种相关蛋白(VPS4、V TA1和ALIX等)组装成四个复合体(ESCRT-0、ESCRT-Ⅰ、ESCRT-Ⅱ和ESCRT-Ⅲ)[11-12]。人体内的绝大多数细胞都可以产生外泌体,包括免疫细胞、肿瘤细胞、血管内皮细胞、神经元细胞和间充质干细胞(mesenchymal stem cells,MSCs)等[13]。因此外泌体分布十分广泛,目前已从人体多种体液中成功分离得到外泌体。

2 外泌体在眼科疾病中的相关研究

2.1 眼表疾病相关研究

近年来, MSCs来源的外泌体(MSCs-exo)在眼表疾病治疗中的潜力受到研究者的关注。MSCs是起源于中胚层的多能干细胞,可从多种易获得的组织中分离,例如骨髓、脂肪、脐带等。起初MSCs被认为通过自身分化为相应的细胞类型发挥其损伤修复的作用[14]。然而,越来越多的证据表明MSCs的旁分泌功能在损伤修复中发挥重要作用,MSCs-exo是其旁分泌的主要物质,具有与MSCs相似的抗炎、抗凋亡、组织修复、神经保护及免疫调节的特性[15]
2.1.1 角膜损伤
角膜外伤是最常见的角膜损伤,角膜外伤可导致角膜缺损,损伤严重者还会导致溃疡、穿孔,进而演化为角膜瘢痕最终影响视力。对于严重的角膜瘢痕来说,唯一能恢复视力的方法是进行角膜移植,但角膜来源的稀缺以及移植后可能引发的免疫排斥仍然是角膜损伤治疗面临的主要困难。研究表明,脂肪来源的MSCs的外泌体(adipose-derived stem cells-derived exosome,ADSC-exo)显著促进角膜基质细胞的增殖并下调角膜中基质金属蛋白酶(matrix metalloproteinase,MMP)和胶原蛋白以重塑细胞外基质(extracellular matrix,ECM)。ADSC-exo分泌的miR-19a抑制同源域相互作用蛋白激酶2(homeodomain interacting protein kinase 2,HIPK2)表达,从而抑制其下游的转化生长因子-β(transforming growth factor-β,TGF-β)/Smad3和p53通路,导致纤维化相关标志物的表达降低,从而抑制角膜基质细胞向肌成纤维细胞转化[16-17]。角膜缘基质的角膜基质干细胞(corneal stromal stem cell,CSSC)可以表现出与MSCs相似的特性。CSSC来源的外泌体可以将miRNA转移到角膜上皮细胞和角膜基质细胞内,减少纤维化基因Col3a1和Acta2的表达,阻断中性粒细胞浸润,从而减轻小鼠角膜损伤后瘢痕形成[18]。以上研究提示了外泌体在治疗角膜纤维化方面的潜在用途。最近,Tang等[19]开发了一种基于诱导多能干细胞间充质干细胞(induced pluripotent stem cell-derived mesenchymal stem cells,iPSC-MSCs)衍生的外泌体与热敏水凝胶结合的新方法,以减少角膜瘢痕形成并加速愈合过程。热敏水凝胶用于外泌体的缓释,MSCs-exo可有效促进受损角膜上皮和基质层的修复,下调角膜基质中的胶原蛋白的mRNA表达,减少细胞外基质ECM的沉积,减少角膜瘢痕形成。该技术可用于各种角膜疾病的治疗,具有广阔的应用前景。
2.1.2 角膜移植排斥反应
角膜虽有免疫赦免特性,但移植术后排斥反应仍可能导致手术失败。CD4+T淋巴细胞、细胞因子、CD8+T淋巴细胞和效应B淋巴细胞均参与角膜移植排斥反应。Jia等[20]在角膜移植排斥模型大鼠结膜下注射骨髓(bone marrow)来源的MSCs的外泌体(BM-MSCs-exo),通过调节细胞因子,如上调白介素(interleukin,IL)-10/干扰素(interferon,IFN)-γ水平,下调IL-17水平,调控Th细胞分化,抑制CD4+T淋巴细胞的表达以及上调(Treg),延长角膜移植片存活时间。除MSCs外,Treg可通过释放的高浓度EVs抑制CD8+细胞毒性T细胞以诱导肝移植免疫耐受[21]。来自未成熟树突状细胞(immature dendritic cell,imDC)的外泌体分泌的miR-682下调CD4+T淋巴细胞中的含Rho关联卷曲螺旋蛋白激酶2(Rho Associated Coiled Coil Containing Protein Kinase 2,ROCK2)基因促进Treg分化,诱导模型小鼠移植肾的免疫耐受[22]。由此推测,Treg或imDC分泌的外泌体亦可能诱导角膜移植片的免疫耐受,但尚未见报道。
2.1.3 移植物抗宿主病
移植物抗宿主病(graft versus-host disease,GVHD)是异基因造血干细胞移植后发生的一种疾病,眼部GVHD主要累及眼表。Carrasco等[23]在小鼠GVHD模型结膜下注射人BM-MSCs-exo,结果发现BM-MSCs-exo可以减少CD3+T淋巴细胞、Pax6的表达,有效减轻眼部GVHD的角膜炎症和鳞状化生。另外有研究者发现BM-MSCs-exo可以抑制Th17细胞并诱导Treg,保存外周幼稚T细胞,从而提高GVHD小鼠的存活率并减轻其眼表病理损伤[24]
2.1.4 干眼
干眼是由泪膜稳态失衡引发的眼表损害,眼表炎症与损伤是其病理机制之一。研究者发现人脐带间充质干细胞来源的外泌体(hUC-MSCs-exo)升高抗炎因子TGF-β、IL-10等的表达,抑制炎性因子如肿瘤坏死因子(tumor necrosis factor,TNF)-α、IL-1β的表达,促进外周血单核巨噬细胞向抗炎性M2表型极化,减轻干眼角膜上皮的损伤,对干眼有治疗作用[25-26]。另外Wang等[27]利用苯扎氯铵诱导小鼠干眼模型并发现,ADSC-exo可以抑制细胞凋亡,降低IL-1β、IL-6、IL-1α、IFN-γ和TNF-α的水平,增加抗炎细胞因子IL-10的水平。同时,ADSC-Exo可逆转NLRP3炎性小体激活及caspase-1、IL-1β和IL-18的上调,从而减轻眼表炎症。

2.2 眼底疾病相关研究

2.2.1 年龄相关性黄斑变性
早期年龄相关性黄斑变性(age-related macular degeneration,AMD)主要是由于视网膜色素上皮细胞(retinal pigment epithelium,RPE)层下的蛋白与脂肪累积,进而形成的RPE沉积物即玻璃膜疣导致的,是目前老年患者中心视力下降的主要原因。有研究者发现,玻璃膜疣中的细胞蛋白质组的特征与外泌体蛋白质组的特征具有相似性,因此RPE细胞可能依靠外泌体转运细胞内蛋白,参与玻璃膜疣的形成过程[28]。此外,氧化应激环境也是AMD的关键致病因素之一。Aroca等[29]的研究发现,RPE细胞会在氧化应激环境诱导下释放更多的外泌体。该研究检测了RPE细胞所释放出的外泌体蛋白,发现其中富含高表达的血管内皮生长因子(vascular endothelial grow th factor,VEGF)受体。另外,研究者将分离出的外泌体与血管内皮细胞共培养,发现血管内皮细胞的成管能力得到明显提升。而脉络膜新生血管(choroidal neovascularization,CNV)的形成可能导致渗出性AMD,所以研究结果表明该机制可能与渗出性AMD病理过程相关。He等[30]在体外实验观察到hUC-MSCs-exo可以下调受到蓝光损伤的RPE细胞VEGF的表达,同时减少激光损伤后大鼠CNV的形成,从而减少视网膜的损伤。因此,MSCs-exo可能是治疗渗出性AMD的有效工具。
2.2.2 糖尿病视网膜病变
糖尿病视网膜病变(diabetic retinopathy,DR)是成年人致盲的主要原因之一,该病变是由神经元和视网膜血管的进行性退化所引起的。研究证明糖尿病患者视网膜中的补体蛋白沉积可能导致DR。Huang等[31]检测了DR患者的血液样本,发现DR患者血浆中所含有的外泌体携带的补体数量增多,经血液循环到达视网膜微血管中,进而引发视网膜微血管的渗漏。当糖尿病患者体内发生炎症,单核细胞与内皮细胞在炎症环境下关系密切,当单核细胞被激活后,其外泌体中血管细胞间黏附分子-1(intercellular cell adhesion molecule-1,ICAM-1)表达增多,内皮细胞被进一步激活,表达新的抗原,释放细胞因子和多种炎症介质,从而加剧血管炎症。研究表明,在链脲佐菌素(streptozotocin,STZ)诱导的DR模型中,结膜下注射或玻璃体腔注射ADSC-exo都可以有效减轻视网膜变性[3]。Zhang等[32]在高糖条件下将培养液中高表达miR-126的hUC-MSCs-exo与人视网膜内皮细胞(human retinal endothelial cells,HREC)进行体外共培养。结果表明外泌体可以下调caspase-1、IL-1b和IL-18的水平,明显减少高糖暴露下HREC的炎性反应。
2.2.3 视网膜脱离
视网膜脱离(retinal detachment,RD)是常见的眼底疾病,指视网膜的神经上皮层与色素上皮层的分离。Ma等[33]选用雄性SD大鼠,视网膜下注射1%透明质酸建立RD模型,在视网膜分离时将BM-MSCs-exo注射到视网膜下,研究其治疗效果。结果表明BM-MSCs-exo下调了TNF-α和IL-1β水平及凋亡相关蛋白酶caspase-8的水平,抑制光感受器细胞的凋亡。同时,研究者对MSCs-exo中携带的蛋白质进行组学分析,结果显示193个蛋白中共有9个蛋白具有抗炎性,能够起到神经保护和缓解细胞凋亡的作用。因此,MSCs-exo的应用对RD诱导的视网膜损伤有治疗作用,是RD的一种潜在辅助治疗手段。
2.2.4 早产儿视网膜病变
早产儿视网膜病变(retinopathy of prematurity,ROP)是指早产儿未血管化的视网膜中发生纤维血管瘤增生、收缩后,引发的牵拉性视网膜脱离,严重者将导致失明。研究发现小胶质细胞来源的外泌体在ROP中具有保护作用。Xu等[34]将出生后7 d的小鼠置于高氧舱中5 d建立氧源性ROP模型(oxygen-induced retinopathy,OIR),结果发现小胶质细胞来源的外泌体下调了视网膜中VEGF mRNA,明显抑制VEGF表达。微RNA分析表明,小胶质细胞外泌体中含有水平极高的miR-24-3p,外泌体通过高含量的miR-24-3p抑制内质网核信号转导蛋白1a途径,从而减缓氧诱导的光感受器细胞的凋亡速度,为治疗ROP提供思路。综上,小胶质细胞外泌体能够减轻OIR动物模型中的血管病变程度,进而抑制视力损伤,该研究为当前社会中的ROP提供了一种潜在有效的治疗方法。

2.3 青光眼相关研究

青光眼(glaucoma)是以病理性高眼压、视神经萎缩、视野缺损、视力下降为特征的一种常见眼病。Perkumas等[35]通过对小梁网(trabecular meshwork,TM)细胞的外泌体进行蛋白质谱鉴定以确定外泌体在眼压调控中是否产生作用,由鉴定结果可知,除外泌体本身含有的108种外泌体特征蛋白外,还包含了如Emilin-1、Neuropilin-1、肌纤蛋白(myocilin,MYOC)等多种TM细胞的特异性蛋白,此研究结果表明外泌体有参与眼压调控的可能性。Liu等[36]提取了原发性开角型青光眼(primary open angle glaucoma,POAG)患者的T M组织标本,与正常对照组基因进行对比,发现其中36种外泌体基因存在差异性表达,由此可以推测异常的外泌体转运途径可能是POAG的潜在发病机制。视网膜神经节细胞(retinal ganglion cells,RGCs)的丧失或功能障碍是青光眼患者不可逆性失明的主要原因。有研究者将BM-MSCs-exo移植到两种不同的青光眼动物模型(激光凝固小梁网和角膜缘血管小鼠模型、微球前房注射小鼠模型)的玻璃体中。在这两种模型中,骨髓MSC来源的外泌体均将相关mRNA(miR-100-5P、miR-106A-5P等)转运入RGC内进行表达,明显促进RGCs的存活,同时防止其功能衰退,并对轴突有一定的保护作用[37]。Mead等[38]通过建立视神经钳夹伤的动物模型,在实验中对模型动物的玻璃体腔注射BM-MSCs-exo。通过对比注射PBS组和注射MSCs组的RGC的存活率,发现注射MSCs-exo的实验组动物RGC存活率更高,细胞功能恢复,状态良好,RGC轴突丢失率明显降低。另外,视网膜缺血再灌注损伤(ischemia-reperfusion injur y,IRI)是青光眼的主要发病机制之一。Yu等[39]在IRI小鼠眼内注射TNF-α刺激后牙龈间充质干细胞来源的外泌体(TNF-α-stimulated gingival MSC-exosome,TG-exo),研究发现TG-exo通过miR-21-5p在视网膜IRI小鼠模型中发挥了抗炎和保护RGC的作用。以上研究均表明由外泌体介导的无细胞疗法可能是青光眼疾病治疗研究的新思路.

3 总结与展望

综上所述,外泌体作为机体细胞通信的重要媒介,近年来其在眼科领域的研究受到了越来越多学者的关注。外泌体可通过传递自身携带的内容物来参与眼表疾病、眼底疾病和青光眼等多种眼科疾病的发生与发展。外泌体在眼科疾病中的研究目前还处于初步探索阶段,尽管有许多实验研究显示了外泌体的抗炎、抗凋亡、组织修复、神经保护及免疫调节等多方面的治疗潜力,但转化到临床仍有很多工作要做,例如如何高效分离纯化外泌体,不同细胞来源的外泌体在眼科疾病中的不同作用也需进一步探讨。总的来说,将外泌体应用于眼科疾病的诊断和治疗虽然方法尚未成熟,但前景广阔,值得积极探索。

利益冲突

所有作者均声明不存在利益冲突

开放获取声明

本文适用于知识共享许可协议(Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。详情请访问:https://creativecommons.org/licenses/by-nc-nd/4.0/。
1、Johnstone RM, Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)[J]. J Biol Chem, 1987, 262(19): 9412-9420.Johnstone RM, Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)[J]. J Biol Chem, 1987, 262(19): 9412-9420.
2、Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977.Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977.
3、Mead B, Tomarev S. Extracellular vesicle therapy for retinal diseases[J]. Prog Retin Eye Res, 2020, 79: 100849.Mead B, Tomarev S. Extracellular vesicle therapy for retinal diseases[J]. Prog Retin Eye Res, 2020, 79: 100849.
4、Liu J, Jiang F, Jiang Y, et al. Roles of exosomes in ocular diseases[ J]. Int J Nanomedicine, 2020, 15: 10519-10538.Liu J, Jiang F, Jiang Y, et al. Roles of exosomes in ocular diseases[ J]. Int J Nanomedicine, 2020, 15: 10519-10538.
5、Conde-Vancells J, Rodriguez-Suarez E, Embade N, et al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes[J]. J Proteome Res, 2008, 7(12): 5157-5166. Conde-Vancells J, Rodriguez-Suarez E, Embade N, et al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes[J]. J Proteome Res, 2008, 7(12): 5157-5166.
6、Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release[J]. Cell Mol Life Sci, 2018, 75(2): 193-208. Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release[J]. Cell Mol Life Sci, 2018, 75(2): 193-208.
7、Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication[J]. Nat Cell Biol, 2019, 21(1): 9-17. Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication[J]. Nat Cell Biol, 2019, 21(1): 9-17.
8、Skotland T, Sandvig K, Llorente A. Lipids in exosomes: current knowledge and the way forward[J]. Prog Lipid Res, 2017, 66: 30-41. Skotland T, Sandvig K, Llorente A. Lipids in exosomes: current knowledge and the way forward[J]. Prog Lipid Res, 2017, 66: 30-41.
9、Pegtel DM, Gould SJ. Exosomes[J]. Annu Rev Biochem, 2019, 88: 487-514. Pegtel DM, Gould SJ. Exosomes[J]. Annu Rev Biochem, 2019, 88: 487-514.
10、Cheng J, Meng J, Zhu L, et al. Exosomal noncoding RNAs in Glioma: biological functions and potential clinical applications[J]. Mol Cancer, 2020, 19(1): 66. Cheng J, Meng J, Zhu L, et al. Exosomal noncoding RNAs in Glioma: biological functions and potential clinical applications[J]. Mol Cancer, 2020, 19(1): 66.
11、Gurunathan S, Kang MH, Jeyaraj M, et al. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes[J]. Cells, 2019, 8(4): 307. Gurunathan S, Kang MH, Jeyaraj M, et al. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes[J]. Cells, 2019, 8(4): 307.
12、Juan T, Fürthauer M. Biogenesis and function of ESCRT-dependent extracellular vesicles[J]. Semin Cell Dev Biol, 2018, 74: 66-77. Juan T, Fürthauer M. Biogenesis and function of ESCRT-dependent extracellular vesicles[J]. Semin Cell Dev Biol, 2018, 74: 66-77.
13、Ludwig N, Whiteside TL, Reichert TE. Challenges in exosome isolation and analysis in health and disease[J]. Int J Mol Sci, 2019, 20(19): 4684. Ludwig N, Whiteside TL, Reichert TE. Challenges in exosome isolation and analysis in health and disease[J]. Int J Mol Sci, 2019, 20(19): 4684.
14、Pittenger MF, MacKay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411): 143-147. Pittenger MF, MacKay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411): 143-147.
15、Yaghoubi Y, Movassaghpour A, Zamani M, et al. Human umbilical cord mesenchymal stem cells derived-exosomes in diseases treatment[J]. Life Sci, 2019, 233: 116733. Yaghoubi Y, Movassaghpour A, Zamani M, et al. Human umbilical cord mesenchymal stem cells derived-exosomes in diseases treatment[J]. Life Sci, 2019, 233: 116733.
16、Shen T, Zheng Q, Luo H, et al. Exosomal miR-19a from adipose-derived stem cells suppresses differentiation of corneal keratocytes into myofibroblasts[J]. Aging (Albany NY), 2020, 12(5): 4093-4110. Shen T, Zheng Q, Luo H, et al. Exosomal miR-19a from adipose-derived stem cells suppresses differentiation of corneal keratocytes into myofibroblasts[J]. Aging (Albany NY), 2020, 12(5): 4093-4110.
17、Shen T, Zheng QQ, Shen J, et al. Effects of adipose-derived mesenchymal stem cell exosomes on corneal stromal fibroblast viability and extracellular matrix synthesis[J]. Chin Med J (Engl), 2018, 131(6): 704-712. Shen T, Zheng QQ, Shen J, et al. Effects of adipose-derived mesenchymal stem cell exosomes on corneal stromal fibroblast viability and extracellular matrix synthesis[J]. Chin Med J (Engl), 2018, 131(6): 704-712.
18、Shojaati G, Khandaker I, Funderburgh ML, et al. Mesenchymal stem cells reduce corneal fibrosis and inflammation via extracellular vesicle-mediated delivery of miRNA[J]. Stem Cells Transl Med, 2019, 8(11): 1192-1201. Shojaati G, Khandaker I, Funderburgh ML, et al. Mesenchymal stem cells reduce corneal fibrosis and inflammation via extracellular vesicle-mediated delivery of miRNA[J]. Stem Cells Transl Med, 2019, 8(11): 1192-1201.
19、Tang Q, Lu B, He J, et al. Exosomes-loaded thermosensitive hydrogels for corneal epithelium and stroma regeneration[J]. Biomaterials, 2022, 280: 121320. Tang Q, Lu B, He J, et al. Exosomes-loaded thermosensitive hydrogels for corneal epithelium and stroma regeneration[J]. Biomaterials, 2022, 280: 121320.
20、Jia Z, Lv Y, Zhang W, et al. Mesenchymal stem cell derived exosomes-based immunological signature in a rat model of corneal allograft rejection therapy[J]. Front Biosci (Landmark Ed), 2022, 27(3): 86. Jia Z, Lv Y, Zhang W, et al. Mesenchymal stem cell derived exosomes-based immunological signature in a rat model of corneal allograft rejection therapy[J]. Front Biosci (Landmark Ed), 2022, 27(3): 86.
21、Chen L, Huang H, Zhang W, et al. Exosomes derived from T regulatory cells suppress CD8+ cytotoxic T lymphocyte proliferation and prolong liver allograft survival[J]. Med Sci Monit, 2019, 25: 4877-4884. Chen L, Huang H, Zhang W, et al. Exosomes derived from T regulatory cells suppress CD8+ cytotoxic T lymphocyte proliferation and prolong liver allograft survival[J]. Med Sci Monit, 2019, 25: 4877-4884.
22、Pang XL, Wang ZG, Liu L, et al. Immature dendritic cells derived exosomes promotes immune tolerance by regulating T cell differentiation in renal transplantation[J]. Aging (Albany NY), 2019, 11(20): 8911-8924. Pang XL, Wang ZG, Liu L, et al. Immature dendritic cells derived exosomes promotes immune tolerance by regulating T cell differentiation in renal transplantation[J]. Aging (Albany NY), 2019, 11(20): 8911-8924.
23、Martínez-Carrasco R, Sánchez-Abarca LI, Nieto-Gómez C, et al. Subconjunctival injection of mesenchymal stromal cells protects the cornea in an experimental model of GVHD[J]. Ocul Surf, 2019, 17(2): 285-294. Martínez-Carrasco R, Sánchez-Abarca LI, Nieto-Gómez C, et al. Subconjunctival injection of mesenchymal stromal cells protects the cornea in an experimental model of GVHD[J]. Ocul Surf, 2019, 17(2): 285-294.
24、Fujii S, Miura Y, Fujishiro A, et al. Graft-versus-host disease amelioration by human bone marrow mesenchymal stromal/stem cell-derived extracellular vesicles is associated with peripheral preservation of naive T cell populations[J]. Stem Cells, 2018, 36(3): 434-445. Fujii S, Miura Y, Fujishiro A, et al. Graft-versus-host disease amelioration by human bone marrow mesenchymal stromal/stem cell-derived extracellular vesicles is associated with peripheral preservation of naive T cell populations[J]. Stem Cells, 2018, 36(3): 434-445.
25、李娟, 周颖, 谭钢, 等. 间充质干细胞外泌体治疗小鼠干眼的疗效评价[J]. 眼科新进展, 2019, 39(10): 901-905.
LI Juan, ZHOU Ying, TAN Gang, et al. Therapeutic effects of mesenchymal stem cells derived exosomes on dry eye mice[J]. Recent Adv Ophthalmol, 2019, 39(10): 901-905.
李娟, 周颖, 谭钢, 等. 间充质干细胞外泌体治疗小鼠干眼的疗效评价[J]. 眼科新进展, 2019, 39(10): 901-905.
LI Juan, ZHOU Ying, TAN Gang, et al. Therapeutic effects of mesenchymal stem cells derived exosomes on dry eye mice[J]. Recent Adv Ophthalmol, 2019, 39(10): 901-905.
26、李娜, 粘红, 赵璐, 等. 人脐带间充质干细胞来源外泌体对兔自身免疫性干眼外周血巨噬细胞的调控[J]. 中华实验眼科杂志, 2019, 37(11): 854-862.
LI Na, ZHAN Hong, ZHAO Lu, et al. Regulation of human umbilical cord mesenchymal stem cells derived exosomes on peripheral blood macrophages from rabbit autoimmune dry eye[J]. Chin J Exp Ophthalmol, 2019, 37(11):854-862.
李娜, 粘红, 赵璐, 等. 人脐带间充质干细胞来源外泌体对兔自身免疫性干眼外周血巨噬细胞的调控[J]. 中华实验眼科杂志, 2019, 37(11): 854-862.
LI Na, ZHAN Hong, ZHAO Lu, et al. Regulation of human umbilical cord mesenchymal stem cells derived exosomes on peripheral blood macrophages from rabbit autoimmune dry eye[J]. Chin J Exp Ophthalmol, 2019, 37(11):854-862.
27、Wang G, Li H, Long H, et al. Exosomes derived from mouse adipose-derived mesenchymal stem cells alleviate benzalkonium chloride-induced mouse dry eye model via inhibiting NLRP3 inflammasome[J]. Ophthalmic Res, 2022, 65(1): 40-51. Wang G, Li H, Long H, et al. Exosomes derived from mouse adipose-derived mesenchymal stem cells alleviate benzalkonium chloride-induced mouse dry eye model via inhibiting NLRP3 inflammasome[J]. Ophthalmic Res, 2022, 65(1): 40-51.
28、Wang AL, Lukas TJ, Yuan M, et al. Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration[J]. PLoS One, 2009, 4(1): e4160. Wang AL, Lukas TJ, Yuan M, et al. Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration[J]. PLoS One, 2009, 4(1): e4160.
29、Atienzar-Aroca S, Flores-Bellver M, Serrano-Heras G, et al. Oxidative stress in retinal pigment epithelium cells increases exosome secretion and promotes angiogenesis in endothelial cells[J]. J Cell Mol Med, 2016, 20(8): 1457-1466. Atienzar-Aroca S, Flores-Bellver M, Serrano-Heras G, et al. Oxidative stress in retinal pigment epithelium cells increases exosome secretion and promotes angiogenesis in endothelial cells[J]. J Cell Mol Med, 2016, 20(8): 1457-1466.
30、He GH, Zhang W, Ma YX, et al. Mesenchymal stem cells-derived exosomes ameliorate blue light stimulation in retinal pigment epithelium cells and retinal laser injury by VEGF-dependent mechanism[J]. Int J Ophthalmol, 2018, 11(4): 559-566. He GH, Zhang W, Ma YX, et al. Mesenchymal stem cells-derived exosomes ameliorate blue light stimulation in retinal pigment epithelium cells and retinal laser injury by VEGF-dependent mechanism[J]. Int J Ophthalmol, 2018, 11(4): 559-566.
31、Huang C, Fisher KP, Hammer SS, et al. Plasma exosomes contribute to microvascular damage in diabetic retinopathy by activating the classical complement pathway[J]. Diabetes, 2018, 67(8): 1639-1649. Huang C, Fisher KP, Hammer SS, et al. Plasma exosomes contribute to microvascular damage in diabetic retinopathy by activating the classical complement pathway[J]. Diabetes, 2018, 67(8): 1639-1649.
32、Zhang W, Wang Y, Kong Y. Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1[J]. Invest Ophthalmol Vis Sci, 2019, 60(1): 294-303. Zhang W, Wang Y, Kong Y. Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1[J]. Invest Ophthalmol Vis Sci, 2019, 60(1): 294-303.
33、Ma M, Li B, Zhang M, et al. Therapeutic effects of mesenchymal stem cell-derived exosomes on retinal detachment[J]. Exp Eye Res, 2020, 191: 107899. Ma M, Li B, Zhang M, et al. Therapeutic effects of mesenchymal stem cell-derived exosomes on retinal detachment[J]. Exp Eye Res, 2020, 191: 107899.
34、Xu W, Wu Y, Hu Z, et al. Exosomes from microglia attenuate photoreceptor injury and neovascularization in an animal model of retinopathy of prematurity[J]. Mol Ther Nucleic Acids, 2019, 16: 778-790. Xu W, Wu Y, Hu Z, et al. Exosomes from microglia attenuate photoreceptor injury and neovascularization in an animal model of retinopathy of prematurity[J]. Mol Ther Nucleic Acids, 2019, 16: 778-790.
35、Perkumas KM, Hoffman EA, McKay BS, et al. Myocilin-associated exosomes in human ocular samples[J]. Exp Eye Res, 2007, 84(1): 209-212. Perkumas KM, Hoffman EA, McKay BS, et al. Myocilin-associated exosomes in human ocular samples[J]. Exp Eye Res, 2007, 84(1): 209-212.
36、Liu Y, Allingham RR, Qin X, et al. Gene expression profile in human trabecular meshwork from patients with primary open-angle glaucoma[J]. Invest Ophthalmol Vis Sci, 2013, 54(9): 6382-6389. Liu Y, Allingham RR, Qin X, et al. Gene expression profile in human trabecular meshwork from patients with primary open-angle glaucoma[J]. Invest Ophthalmol Vis Sci, 2013, 54(9): 6382-6389.
37、Mead B, Amaral J, Tomarev S. Mesenchymal stem cell-derived small extracellular vesicles promote neuroprotection in rodent models of glaucoma[J]. Invest Ophthalmol Vis Sci, 2018, 59(2): 702-714. Mead B, Amaral J, Tomarev S. Mesenchymal stem cell-derived small extracellular vesicles promote neuroprotection in rodent models of glaucoma[J]. Invest Ophthalmol Vis Sci, 2018, 59(2): 702-714.
38、Mead B, Tomarev S. Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through miRNA-dependent mechanisms[J]. Stem Cells Transl Med, 2017, 6(4): 1273-1285. Mead B, Tomarev S. Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through miRNA-dependent mechanisms[J]. Stem Cells Transl Med, 2017, 6(4): 1273-1285.
39、Yu Z, Wen Y, Jiang N, et al. TNF-α stimulation enhances the neuroprotective effects of gingival MSCs derived exosomes in retinal ischemia-reperfusion injury via the MEG3/miR-21a-5p axis[J]. Biomaterials, 2022, 284: 121484. Yu Z, Wen Y, Jiang N, et al. TNF-α stimulation enhances the neuroprotective effects of gingival MSCs derived exosomes in retinal ischemia-reperfusion injury via the MEG3/miR-21a-5p axis[J]. Biomaterials, 2022, 284: 121484.
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
中山眼科



中山大学
目录