1、Chen N, Frishman WH. High-density lipoprotein infusion therapy and
atherosclerosis: current research and future directions[ J]. Cardiol Rev,
2016, 24(6): 298-302.Chen N, Frishman WH. High-density lipoprotein infusion therapy and
atherosclerosis: current research and future directions[ J]. Cardiol Rev,
2016, 24(6): 298-302.
2、Kontush A, Lindahl M, Lhomme M, et al. Structure of HDL: particle
subclasses and molecular components[ J]. Handb Exp Pharmacol,
2015, 224: 3-51.Kontush A, Lindahl M, Lhomme M, et al. Structure of HDL: particle
subclasses and molecular components[ J]. Handb Exp Pharmacol,
2015, 224: 3-51.
3、Georgila K, Vyrla D, Drakos E. Apolipoprotein A-I (ApoA-I), immunity,
inflammation and cancer[ J]. Cancers (Basel), 2019, 11(8): 1097.Georgila K, Vyrla D, Drakos E. Apolipoprotein A-I (ApoA-I), immunity,
inflammation and cancer[ J]. Cancers (Basel), 2019, 11(8): 1097.
4、Reddy ST, Navab M, Anantharamaiah GM, et al. Apolipoprotein A-I
mimetics[ J]. Curr Opin Lipidol, 2014, 25(4): 304-308.Reddy ST, Navab M, Anantharamaiah GM, et al. Apolipoprotein A-I
mimetics[ J]. Curr Opin Lipidol, 2014, 25(4): 304-308.
5、Estrada-Luna D, Ortiz-Rodriguez M A, Medina-Briseno L, et al.
Current therapies focused on high-density lipoproteins associated with
cardiovascular disease[ J]. Molecules, 2018, 23(11): 2730.Estrada-Luna D, Ortiz-Rodriguez M A, Medina-Briseno L, et al.
Current therapies focused on high-density lipoproteins associated with
cardiovascular disease[ J]. Molecules, 2018, 23(11): 2730.
6、Zhou L, Li C, Gao L, et al. High-density lipoprotein synthesis and
metabolism (review)[ J]. Mol Med Rep, 2015, 12(3): 4015-4021.Zhou L, Li C, Gao L, et al. High-density lipoprotein synthesis and
metabolism (review)[ J]. Mol Med Rep, 2015, 12(3): 4015-4021.
7、Prosser HC, Ng MK, Bursill CA. The role of cholesterol efflux in
mechanisms of endothelial protection by HDL[ J]. Curr Opin Lipidol,
2012, 23(3): 182-189.Prosser HC, Ng MK, Bursill CA. The role of cholesterol efflux in
mechanisms of endothelial protection by HDL[ J]. Curr Opin Lipidol,
2012, 23(3): 182-189.
8、van der Vorst EPC. High-density lipoproteins and apolipoprotein
A1[ J]. Subcell Biochem, 2020, 94: 399-420.van der Vorst EPC. High-density lipoproteins and apolipoprotein
A1[ J]. Subcell Biochem, 2020, 94: 399-420.
9、Cameron SJ, Morrell CN, Bao C, et al. A novel anti-inflammatory effect
for high density lipoprotein[ J]. PLoS One, 2015, 10(12): e0144372.
Cameron SJ, Morrell CN, Bao C, et al. A novel anti-inflammatory effect
for high density lipoprotein[ J]. PLoS One, 2015, 10(12): e0144372.
10、Haghikia A, Landmesser U. High-density lipoproteins: effects on
vascular function and role in the immune response[ J]. Cardiol Clin,
2018, 36(2): 317-327.Haghikia A, Landmesser U. High-density lipoproteins: effects on
vascular function and role in the immune response[ J]. Cardiol Clin,
2018, 36(2): 317-327.
11、Namiri-Kalantari R, Gao F, Chattopadhyay A, et al. The dual nature of
HDL: anti-inflammatory and pro-inflammatory[ J]. Biofactors, 2015,
41(3): 153-159.Namiri-Kalantari R, Gao F, Chattopadhyay A, et al. The dual nature of
HDL: anti-inflammatory and pro-inflammatory[ J]. Biofactors, 2015,
41(3): 153-159.
12、Stoekenbroek RM, Stroes ES, Hovingh GK. ApoA-I mimetics[ J].
Handb Exp Pharmacol, 2015, 224: 631-648.Stoekenbroek RM, Stroes ES, Hovingh GK. ApoA-I mimetics[ J].
Handb Exp Pharmacol, 2015, 224: 631-648.
13、Zhang Q, Hu J, Hu Y, et al. Relationship between serum apolipoproteins levels and retinopathy risk in subjects with type 2 diabetes mellitus[ J].
Acta Diabetol, 2018, 55(7): 681-689.Zhang Q, Hu J, Hu Y, et al. Relationship between serum apolipoproteins levels and retinopathy risk in subjects with type 2 diabetes mellitus[ J].
Acta Diabetol, 2018, 55(7): 681-689.
14、Sharifov O F, Xu X, Gaggar A, et al. Anti-inflammatory mechanisms
of apolipoprotein A-I mimetic peptide in acute respiratory distress
syndrome secondary to sepsis[ J]. PLoS One, 2013, 8(5): e64486.Sharifov O F, Xu X, Gaggar A, et al. Anti-inflammatory mechanisms
of apolipoprotein A-I mimetic peptide in acute respiratory distress
syndrome secondary to sepsis[ J]. PLoS One, 2013, 8(5): e64486.
15、Mansukhani NA, Peters EB, So MM, et al. Peptide amphiphile
supramolecular nanostructures as a targeted therapy for
atherosclerosis[ J]. Macromol Biosci, 2019, 19(6): e1900066.Mansukhani NA, Peters EB, So MM, et al. Peptide amphiphile
supramolecular nanostructures as a targeted therapy for
atherosclerosis[ J]. Macromol Biosci, 2019, 19(6): e1900066.
16、Smith JD. Apolipoprotein A-I and its mimetics for the treatment of
atherosclerosis[ J]. Curr Opin Investig Drugs, 2010, 11(9): 989-996.Smith JD. Apolipoprotein A-I and its mimetics for the treatment of
atherosclerosis[ J]. Curr Opin Investig Drugs, 2010, 11(9): 989-996.
17、Liu D, Wu M, Du Q, et al. The apolipoprotein A-I mimetic peptide,
D-4F, restrains neointimal formation through heme oxygenase-1 up-regulation[ J]. J Cell Mol Med, 2017, 21(12): 3810-3820.Liu D, Wu M, Du Q, et al. The apolipoprotein A-I mimetic peptide,
D-4F, restrains neointimal formation through heme oxygenase-1 up-regulation[ J]. J Cell Mol Med, 2017, 21(12): 3810-3820.
18、Navab M, Reddy ST, Anantharamaiah GM, et al. Intestine may be
a major site of action for the apoA-I mimetic peptide 4F whether
administered subcutaneously or orally[ J]. J Lipid Res, 2011, 52(6):
1200-1210.Navab M, Reddy ST, Anantharamaiah GM, et al. Intestine may be
a major site of action for the apoA-I mimetic peptide 4F whether
administered subcutaneously or orally[ J]. J Lipid Res, 2011, 52(6):
1200-1210.
19、Dunbar RL, Movva R, Bloedon LT, et al. Oral apolipoprotein A-I
mimetic D-4F lowers HDL-inflammatory index in high-risk patients:
a first-in-human multiple-dose, randomized controlled trial[ J]. Clin
Transl Sci, 2017, 10(6): 455-469.Dunbar RL, Movva R, Bloedon LT, et al. Oral apolipoprotein A-I
mimetic D-4F lowers HDL-inflammatory index in high-risk patients:
a first-in-human multiple-dose, randomized controlled trial[ J]. Clin
Transl Sci, 2017, 10(6): 455-469.
20、Qin S, Kamanna VS, Lai JH, et al. Reverse D4F, an apolipoproteinAI mimetic peptide, inhibits atherosclerosis in ApoE-null mice[ J]. J
Cardiovasc Pharmacol Ther, 2012, 17(3): 334-343.Qin S, Kamanna VS, Lai JH, et al. Reverse D4F, an apolipoproteinAI mimetic peptide, inhibits atherosclerosis in ApoE-null mice[ J]. J
Cardiovasc Pharmacol Ther, 2012, 17(3): 334-343.
21、Yao S, Tian H, Miao C, et al. D4F alleviates macrophage-derived foam
cell apoptosis by inhibiting CD36 expression and ER stress-CHOP
pathway[ J]. J Lipid Res, 2015, 56(4): 836-847.Yao S, Tian H, Miao C, et al. D4F alleviates macrophage-derived foam
cell apoptosis by inhibiting CD36 expression and ER stress-CHOP
pathway[ J]. J Lipid Res, 2015, 56(4): 836-847.
22、Bertrand E, Fritsch C, Diether S, et al. Identification of apolipoprotein
A-I as a “STOP” signal for myopia[ J]. Mol Cell Proteomics, 2006,
5(11): 2158-2166.Bertrand E, Fritsch C, Diether S, et al. Identification of apolipoprotein
A-I as a “STOP” signal for myopia[ J]. Mol Cell Proteomics, 2006,
5(11): 2158-2166.
23、Duan X, Lu Q, Xue P, et al. Proteomic analysis of aqueous humor from
patients with myopia[ J]. 2008 Mar 3;14: 370-377.Duan X, Lu Q, Xue P, et al. Proteomic analysis of aqueous humor from
patients with myopia[ J]. 2008 Mar 3;14: 370-377.
24、Yu FJ, Lam TC, Liu LQ, et al. Isotope-coded protein label based
quantitative proteomic analysis reveals significant up-regulation of
apolipoprotein A1 and ovotransferrin in the myopic chick vitreous[ J].
Sci Rep, 2017, 7(1): 12649.Yu FJ, Lam TC, Liu LQ, et al. Isotope-coded protein label based
quantitative proteomic analysis reveals significant up-regulation of
apolipoprotein A1 and ovotransferrin in the myopic chick vitreous[ J].
Sci Rep, 2017, 7(1): 12649.
25、Summers JA , Harper AR , Feasley CL, et al. Identification of
apolipoprotein A-I as a retinoic acid-binding protein in the eye[ J]. J
Biol Chem, 2016, 291(36): 18991-19005.Summers JA , Harper AR , Feasley CL, et al. Identification of
apolipoprotein A-I as a retinoic acid-binding protein in the eye[ J]. J
Biol Chem, 2016, 291(36): 18991-19005.
26、Chun RK, Shan SW, Lam TC, et al. Cyclic adenosine monophosphate
activates retinal apolipoprotein a1 expression and inhibits myopic eye
growth[ J]. Invest Ophthalmol Vis Sci, 2015, 56(13): 8151-8157.Chun RK, Shan SW, Lam TC, et al. Cyclic adenosine monophosphate
activates retinal apolipoprotein a1 expression and inhibits myopic eye
growth[ J]. Invest Ophthalmol Vis Sci, 2015, 56(13): 8151-8157.
27、Yu FJ, Lam TC, Sze AY, et al. Alteration of retinal metabolism and
oxidative stress may implicate myopic eye growth: evidence from
discovery and targeted proteomics in an animal model[ J]. J Proteomics,
2020, 221: 103684.Yu FJ, Lam TC, Sze AY, et al. Alteration of retinal metabolism and
oxidative stress may implicate myopic eye growth: evidence from
discovery and targeted proteomics in an animal model[ J]. J Proteomics,
2020, 221: 103684.
28、Flores R, Jin X, Chang J, et al. LCAT, ApoD, and ApoA1 expression and
review of cholesterol deposition in the cornea[ J]. Biomolecules, 2019,
9(12): 785.Flores R, Jin X, Chang J, et al. LCAT, ApoD, and ApoA1 expression and
review of cholesterol deposition in the cornea[ J]. Biomolecules, 2019,
9(12): 785.
29、Schaefer EJ, Anthanont P, Diffenderfer MR , et al. Diagnosis and
treatment of high density lipoprotein deficiency[ J]. Prog Cardiovasc
Dis, 2016, 59(2): 97-106.Schaefer EJ, Anthanont P, Diffenderfer MR , et al. Diagnosis and
treatment of high density lipoprotein deficiency[ J]. Prog Cardiovasc
Dis, 2016, 59(2): 97-106.
30、Hooper AJ, Hegele RA, Burnett JR . Tangier disease: update for
2020[ J]. Curr Opin Lipidol, 2020, 31(2): 80-84.Hooper AJ, Hegele RA, Burnett JR . Tangier disease: update for
2020[ J]. Curr Opin Lipidol, 2020, 31(2): 80-84.
31、Lamiquiz-Moneo I, Civeira F, Gomez-Coronado D, et al. Lipid profile
rather than the lcat mutation explains renal disease in familial LCAT
deficiency[ J]. J Clin Med, 2019, 8(11): 1860.Lamiquiz-Moneo I, Civeira F, Gomez-Coronado D, et al. Lipid profile
rather than the lcat mutation explains renal disease in familial LCAT
deficiency[ J]. J Clin Med, 2019, 8(11): 1860.
32、Ustaoglu M, Solmaz N, Baser B, et al. Ocular and genetic characteristics
observed in two cases of fish-eye disease[ J]. Cornea, 2019, 38(3):
379-383.Ustaoglu M, Solmaz N, Baser B, et al. Ocular and genetic characteristics
observed in two cases of fish-eye disease[ J]. Cornea, 2019, 38(3):
379-383.
33、Tserentsoodol N, Gordiyenko NV, Pascual I, et al. Intraretinal lipid
transport is dependent on high density lipoprotein-like particles and
class B scavenger receptors[ J]. Mol Vis, 2006, 12: 1319-1333.Tserentsoodol N, Gordiyenko NV, Pascual I, et al. Intraretinal lipid
transport is dependent on high density lipoprotein-like particles and
class B scavenger receptors[ J]. Mol Vis, 2006, 12: 1319-1333.
34、Ishida BY, Duncan KG, Bailey KR, et al. High density lipoprotein
mediated lipid efflux from retinal pigment epithelial cells in culture[ J].
Br J Ophthalmol, 2006, 90(5): 616-620.Ishida BY, Duncan KG, Bailey KR, et al. High density lipoprotein
mediated lipid efflux from retinal pigment epithelial cells in culture[ J].
Br J Ophthalmol, 2006, 90(5): 616-620.
35、Liu J, Yao S, Wang S, et al. D-4F, an apolipoprotein A-I mimetic peptide,
protects human umbilical vein endothelial cells from oxidized low-density lipoprotein-induced injury by preventing the downregulation
of pigment epithelium-derived factor expression[ J]. J Cardiovasc
Pharmacol, 2014, 63(6): 553-561.Liu J, Yao S, Wang S, et al. D-4F, an apolipoprotein A-I mimetic peptide,
protects human umbilical vein endothelial cells from oxidized low-density lipoprotein-induced injury by preventing the downregulation
of pigment epithelium-derived factor expression[ J]. J Cardiovasc
Pharmacol, 2014, 63(6): 553-561.
36、Biswas L, Zhou X, Dhillon B, et al. Retinal pigment epithelium
cholesterol efflux mediated by the 18 kDa translocator protein, TSPO, a
potential target for treating age-related macular degeneration[ J]. Hum
Mol Genet, 2017, 26(22): 4327-4339.Biswas L, Zhou X, Dhillon B, et al. Retinal pigment epithelium
cholesterol efflux mediated by the 18 kDa translocator protein, TSPO, a
potential target for treating age-related macular degeneration[ J]. Hum
Mol Genet, 2017, 26(22): 4327-4339.
37、Jun S, Datta S, Wang L, et al. The impact of lipids, lipid oxidation, and
inflammation on AMD, and the potential role of miRNAs on lipid
metabolism in the RPE[ J]. Exp Eye Res, 2019, 181: 346-355.Jun S, Datta S, Wang L, et al. The impact of lipids, lipid oxidation, and
inflammation on AMD, and the potential role of miRNAs on lipid
metabolism in the RPE[ J]. Exp Eye Res, 2019, 181: 346-355.
38、Zhang Q, Hu J, Hu Y, et al. Relationship between serum apolipoproteins
levels and retinopathy risk in subjects with type 2 diabetes mellitus[ J].
Acta Diabetol, 2018, 55(7): 681-689.Zhang Q, Hu J, Hu Y, et al. Relationship between serum apolipoproteins
levels and retinopathy risk in subjects with type 2 diabetes mellitus[ J].
Acta Diabetol, 2018, 55(7): 681-689.
39、Sharma Y, Saxena S, Mishra A, et al. Apolipoprotein A-I and B and
Subjective Global Assessment relationship can reflect lipid defects in
diabetic retinopathy[ J]. Nutrition, 2017, 33: 70-75.Sharma Y, Saxena S, Mishra A, et al. Apolipoprotein A-I and B and
Subjective Global Assessment relationship can reflect lipid defects in
diabetic retinopathy[ J]. Nutrition, 2017, 33: 70-75.
40、Sasongko MB, Wong TY, Nguyen TT, et al. Novel versus traditional risk
markers for diabetic retinopathy[ J]. Diabetologia, 2012, 55(3): 666-670.Sasongko MB, Wong TY, Nguyen TT, et al. Novel versus traditional risk
markers for diabetic retinopathy[ J]. Diabetologia, 2012, 55(3): 666-670.
41、Simó R , Higuera M, García-R amírez M, et al. Elevation of
apolipoprotein A-I and apolipoprotein H levels in the vitreous fluid and overexpression in the retina of diabetic patients[ J]. Arch Ophthalmol,
2008, 126(8): 1076-1081.Simó R , Higuera M, García-R amírez M, et al. Elevation of
apolipoprotein A-I and apolipoprotein H levels in the vitreous fluid and overexpression in the retina of diabetic patients[ J]. Arch Ophthalmol,
2008, 126(8): 1076-1081.
42、Yu FJ, Lam TC, Liu LQ, et al. Isotope-coded protein label based
quantitative proteomic analysis reveals significant up-regulation of
apolipoprotein A1 and ovotransferrin in the myopic chick vitreous[ J].
Sci Rep, 2017, 7(1): 12649.Yu FJ, Lam TC, Liu LQ, et al. Isotope-coded protein label based
quantitative proteomic analysis reveals significant up-regulation of
apolipoprotein A1 and ovotransferrin in the myopic chick vitreous[ J].
Sci Rep, 2017, 7(1): 12649.
43、Ding N, Luo S, Yu J, et al. Vitreous levels of apolipoprotein A1 and
retinol binding protein 4 in human rhegmatogenous retinal detachment
associated with choroidal detachment[ J]. Mol Vis, 2018, 24: 252-260.Ding N, Luo S, Yu J, et al. Vitreous levels of apolipoprotein A1 and
retinol binding protein 4 in human rhegmatogenous retinal detachment
associated with choroidal detachment[ J]. Mol Vis, 2018, 24: 252-260.
44、Simó R, García-Ramírez M, Higuera M, et al. Apolipoprotein A1 is
overexpressed in the retina of diabetic patients[ J]. Am J Ophthalmol,
2009, 147(2): 319-325.e1.Simó R, García-Ramírez M, Higuera M, et al. Apolipoprotein A1 is
overexpressed in the retina of diabetic patients[ J]. Am J Ophthalmol,
2009, 147(2): 319-325.e1.
45、谭澄烨, 邵珺, 庄淼, 等. 载脂蛋白A-I对高糖环境下人视网膜血
管内皮细胞生物行为及VEGF表达的抑制作用[ J]. 中华实验眼
科杂志, 2017, 35(7): 586-590.
TAN CY, SHAO J, ZHUANG M, et al. Inhibitory effects
of apolipoprotein A-I on biological behavior and VEGF expression of
human retinal epithelial cells in high glucose environment[ J]. Chinese
Journal of Experimental Ophthalmology, 2017, 35(7): 586-590.谭澄烨, 邵珺, 庄淼, 等. 载脂蛋白A-I对高糖环境下人视网膜血
管内皮细胞生物行为及VEGF表达的抑制作用[ J]. 中华实验眼
科杂志, 2017, 35(7): 586-590.
TAN CY, SHAO J, ZHUANG M, et al. Inhibitory effects
of apolipoprotein A-I on biological behavior and VEGF expression of
human retinal epithelial cells in high glucose environment[ J]. Chinese
Journal of Experimental Ophthalmology, 2017, 35(7): 586-590.
46、Xu Q, Cao S, Rajapakse S, et al. Understanding AMD by analogy:
systematic review of lipid-related common pathogenic mechanisms in
AMD, AD, AS and GN[ J]. Lipids Health Dis, 2018, 17(1): 3.Xu Q, Cao S, Rajapakse S, et al. Understanding AMD by analogy:
systematic review of lipid-related common pathogenic mechanisms in
AMD, AD, AS and GN[ J]. Lipids Health Dis, 2018, 17(1): 3.
47、Pikuleva IA, Curcio CA. Cholesterol in the retina: the best is yet to
come[ J]. Prog Retin Eye Res, 2014, 41: 64-89.Pikuleva IA, Curcio CA. Cholesterol in the retina: the best is yet to
come[ J]. Prog Retin Eye Res, 2014, 41: 64-89.
48、Lyssenko NN, Haider N, Picataggi A, et al. Directional ABCA1-
mediated cholesterol efflux and apoB-lipoprotein secretion in the
retinal pigment epithelium[ J]. J Lipid Res, 2018, 59(10): 1927-1939.Lyssenko NN, Haider N, Picataggi A, et al. Directional ABCA1-
mediated cholesterol efflux and apoB-lipoprotein secretion in the
retinal pigment epithelium[ J]. J Lipid Res, 2018, 59(10): 1927-1939.
49、Dolz-Marco R, Balaratnasingam C, Messinger JD, et al. The border of
macular atrophy in age-related macular degeneration: a clinicopathologic
correlation[ J]. Am J Ophthalmol, 2018, 193: 166-177.Dolz-Marco R, Balaratnasingam C, Messinger JD, et al. The border of
macular atrophy in age-related macular degeneration: a clinicopathologic
correlation[ J]. Am J Ophthalmol, 2018, 193: 166-177.
50、Curcio CA. Soft drusen in age-related macular degeneration: biology
and targeting via the oil spill strategies[ J]. Invest Ophthalmol Vis Sci,
2018, 59(4): AMD160-AMD181.Curcio CA. Soft drusen in age-related macular degeneration: biology
and targeting via the oil spill strategies[ J]. Invest Ophthalmol Vis Sci,
2018, 59(4): AMD160-AMD181.
51、Holz FG, Sadda SR, Busbee B, et al. Efficacy and safety of lampalizumab
for geographic atrophy due to age-related macular degeneration:
chroma and spectri phase 3 randomized clinical trials[ J]. JAMA
Ophthalmol, 2018, 136(6): 666-677.Holz FG, Sadda SR, Busbee B, et al. Efficacy and safety of lampalizumab
for geographic atrophy due to age-related macular degeneration:
chroma and spectri phase 3 randomized clinical trials[ J]. JAMA
Ophthalmol, 2018, 136(6): 666-677.
52、Fang L, Choi SH, Baek JS, et al. Control of angiogenesis by AIBPmediated cholesterol efflux[ J]. Nature, 2013, 498(7452): 118-122.Fang L, Choi SH, Baek JS, et al. Control of angiogenesis by AIBPmediated cholesterol efflux[ J]. Nature, 2013, 498(7452): 118-122.
53、Schneider DA, Choi SH, Agatisa-Boyle C, et al. AIBP protects against
metabolic abnormalities and atherosclerosis[ J]. J Lipid Res, 2018,
59(5): 854-863.Schneider DA, Choi SH, Agatisa-Boyle C, et al. AIBP protects against
metabolic abnormalities and atherosclerosis[ J]. J Lipid Res, 2018,
59(5): 854-863.
54、Zhang M, Zhao GJ, Yao F, et al. AIBP reduces atherosclerosis by
promoting reverse cholesterol transport and ameliorating inflammation
in apoE(-/-) mice[ J]. Atherosclerosis, 2018, 273: 122-130.Zhang M, Zhao GJ, Yao F, et al. AIBP reduces atherosclerosis by
promoting reverse cholesterol transport and ameliorating inflammation
in apoE(-/-) mice[ J]. Atherosclerosis, 2018, 273: 122-130.
55、Zhu L , Parker M , Enemchukwu N, et al . Combination of
apolipoprotein-A-I/apolipoprotein-A-I binding protein and anti-VEGF treatment overcomes anti-VEGF resistance in choroidal
neovascularization in mice[ J]. Commun Biol, 2020, 3(1): 386.Zhu L , Parker M , Enemchukwu N, et al . Combination of
apolipoprotein-A-I/apolipoprotein-A-I binding protein and anti-VEGF treatment overcomes anti-VEGF resistance in choroidal
neovascularization in mice[ J]. Commun Biol, 2020, 3(1): 386.
56、Mao R, Meng S, Gu Q, et al. AIBP limits angiogenesis through gammasecretase-mediated upregulation of notch signaling[ J]. Circ Res, 2017,
120(11): 1727-1739.Mao R, Meng S, Gu Q, et al. AIBP limits angiogenesis through gammasecretase-mediated upregulation of notch signaling[ J]. Circ Res, 2017,
120(11): 1727-1739.
57、Zhao H, Jin H, Li Q, et al. Inhibition of pathologic retinal neovascularization
by a small peptide derived from human apolipoprotein(a)[ J]. Invest
Ophthalmol Vis Sci, 2009, 50(11): 5384-5395.Zhao H, Jin H, Li Q, et al. Inhibition of pathologic retinal neovascularization
by a small peptide derived from human apolipoprotein(a)[ J]. Invest
Ophthalmol Vis Sci, 2009, 50(11): 5384-5395.
58、Wang Z, Zhao H, Ma JX, et al. Inhibition of pathological corneal
neovascularization by a small peptide derived from human
apolipoprotein (a) Kringle V[ J]. Cornea, 2014, 33(4): 405-413.Wang Z, Zhao H, Ma JX, et al. Inhibition of pathological corneal
neovascularization by a small peptide derived from human
apolipoprotein (a) Kringle V[ J]. Cornea, 2014, 33(4): 405-413.
59、Rudolf M, Mir Mohi Sefat A, Miura Y, et al. ApoA-I mimetic peptide
4F reduces age-related lipid deposition in murine Bruch’s membrane
and causes its structural remodeling[ J]. Curr Eye Res, 2018, 43(1):
135-146.Rudolf M, Mir Mohi Sefat A, Miura Y, et al. ApoA-I mimetic peptide
4F reduces age-related lipid deposition in murine Bruch’s membrane
and causes its structural remodeling[ J]. Curr Eye Res, 2018, 43(1):
135-146.
60、Rudolf M, Curcio CA, Schl?tzer-Schrehardt U, et al. Apolipoprotein
A-I mimetic peptide L-4F removes Bruch’s membrane lipids in aged
nonhuman primates[ J]. Invest Ophthalmol Vis Sci, 2019, 60(2):
461-472.Rudolf M, Curcio CA, Schl?tzer-Schrehardt U, et al. Apolipoprotein
A-I mimetic peptide L-4F removes Bruch’s membrane lipids in aged
nonhuman primates[ J]. Invest Ophthalmol Vis Sci, 2019, 60(2):
461-472.