1、王若男, 钱仪敏, 宋硕, 等. 眼底疾病治疗药物非临床研究策
略[ J]. 中国新药杂志, 2020, 29(15): 1723-1728.
WANG Ruonan, QIAN Yimin, SONG Shuo, et al. Non-clinical
research strategy for the treatment of fundus diseases[ J]. Chinese
Journal of New Drugs, 2020, 29(15): 1723-1728.王若男, 钱仪敏, 宋硕, 等. 眼底疾病治疗药物非临床研究策
略[ J]. 中国新药杂志, 2020, 29(15): 1723-1728.
WANG Ruonan, QIAN Yimin, SONG Shuo, et al. Non-clinical
research strategy for the treatment of fundus diseases[ J]. Chinese
Journal of New Drugs, 2020, 29(15): 1723-1728.
2、Gower N, Barr y R J, Edmunds MR , et al. Drug discover y in
ophthalmology: past success, present challenges, and future
opportunities[ J]. BMC Ophthalmol, 2016, 16: 11.Gower N, Barr y R J, Edmunds MR , et al. Drug discover y in
ophthalmology: past success, present challenges, and future
opportunities[ J]. BMC Ophthalmol, 2016, 16: 11.
3、刘晓凡, 孙翔宇, 朱迅. 人工智能在新药研发中的应用现状与挑
战[ J]. 药学进展, 2021, 45(7): 494-501.
LIU Xiaofan, SUN Xiangyu, ZHU Xun. Current situation and
challenges facing artificial intelligence in its application in new drug
research and development[ J]. Progress in Pharmaceutical Sciences,
2021, 45(7): 494-501.刘晓凡, 孙翔宇, 朱迅. 人工智能在新药研发中的应用现状与挑
战[ J]. 药学进展, 2021, 45(7): 494-501.
LIU Xiaofan, SUN Xiangyu, ZHU Xun. Current situation and
challenges facing artificial intelligence in its application in new drug
research and development[ J]. Progress in Pharmaceutical Sciences,
2021, 45(7): 494-501.
4、Zhang K, Zhang L, Weinreb RN. Ophthalmic drug discovery: novel
targets and mechanisms for retinal diseases and glaucoma[ J]. Nat Rev
Drug Discov, 2012, 11(7): 541-559.Zhang K, Zhang L, Weinreb RN. Ophthalmic drug discovery: novel
targets and mechanisms for retinal diseases and glaucoma[ J]. Nat Rev
Drug Discov, 2012, 11(7): 541-559.
5、Lin H, Li R, Liu Z, et al. Diagnostic efficacy and therapeutic decision-
making capacity of an artificial intelligence platform for childhood
cataracts in eye clinics: a multicentre randomized controlled trial[ J].
EClinicalMedicine, 2019, 9: 52-59.Lin H, Li R, Liu Z, et al. Diagnostic efficacy and therapeutic decision-
making capacity of an artificial intelligence platform for childhood
cataracts in eye clinics: a multicentre randomized controlled trial[ J].
EClinicalMedicine, 2019, 9: 52-59.
6、Li F, Song D, Chen H, et al. Development and clinical deployment of
a smartphone-based visual field deep learning system for glaucoma
detection[ J]. NPJ Digit Med, 2020, 3: 123.Li F, Song D, Chen H, et al. Development and clinical deployment of
a smartphone-based visual field deep learning system for glaucoma
detection[ J]. NPJ Digit Med, 2020, 3: 123.
7、Yang WH, Zheng B, Wu MN, et al. An evaluation system of fundus
photograph-based intelligent diagnostic technology for diabetic
retinopathy and applicability for research[ J]. Diabetes Ther, 2019,
10(5): 1811-1822.Yang WH, Zheng B, Wu MN, et al. An evaluation system of fundus
photograph-based intelligent diagnostic technology for diabetic
retinopathy and applicability for research[ J]. Diabetes Ther, 2019,
10(5): 1811-1822.
8、梁礼, 邓成龙, 张艳敏, 等. 人工智能在药物发现中的应用与挑
战[ J]. 药学进展, 2020, 44(1): 18-27.
LIANG Li, DENG Chenglong, ZHANG Yanmino, et al. Application
and challenges of artificial intelligence in drug discovery[ J]. Progress in
Pharmaceutical Sciences, 2020, 44(1): 18-27.梁礼, 邓成龙, 张艳敏, 等. 人工智能在药物发现中的应用与挑
战[ J]. 药学进展, 2020, 44(1): 18-27.
LIANG Li, DENG Chenglong, ZHANG Yanmino, et al. Application
and challenges of artificial intelligence in drug discovery[ J]. Progress in
Pharmaceutical Sciences, 2020, 44(1): 18-27.
9、Yang X, Wang Y, Byrne R, et al. Concepts of artificial intelligence for
computer-assisted drug discovery[ J]. Chem Rev, 2019, 119(18):
10520-10594.Yang X, Wang Y, Byrne R, et al. Concepts of artificial intelligence for
computer-assisted drug discovery[ J]. Chem Rev, 2019, 119(18):
10520-10594.
10、Chen H, Engkvist O, Wang Y, et al. The rise of deep learning in drug
discovery[ J]. Drug Discov Today, 2018, 23(6): 1241-1250.Chen H, Engkvist O, Wang Y, et al. The rise of deep learning in drug
discovery[ J]. Drug Discov Today, 2018, 23(6): 1241-1250.
11、Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates
and related parameters[ J]. Biostatistics, 2019, 20(2): 273-286.Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates
and related parameters[ J]. Biostatistics, 2019, 20(2): 273-286.
12、Swinney DC, Anthony J. How were new medicines discovered?[ J]. Nat
Rev Drug Discov, 2011, 10(7): 507-519.Swinney DC, Anthony J. How were new medicines discovered?[ J]. Nat
Rev Drug Discov, 2011, 10(7): 507-519.
13、Sams-Dodd F. Is poor research the cause of the declining productivity
of the pharmaceutical industry? An industry in need of a paradigm
shift[ J]. Drug Discov Today, 2013, 18(5/6): 211-217.Sams-Dodd F. Is poor research the cause of the declining productivity
of the pharmaceutical industry? An industry in need of a paradigm
shift[ J]. Drug Discov Today, 2013, 18(5/6): 211-217.
14、Amadi-Obi A, Yu CR, Liu X, et al. TH17 cells contribute to uveitis and
scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1[ J].
Nat Med, 2007, 13(6): 711-718.Amadi-Obi A, Yu CR, Liu X, et al. TH17 cells contribute to uveitis and
scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1[ J].
Nat Med, 2007, 13(6): 711-718.
15、Mesquida M, Leszczynska A, Lloren? V, et al. Interleukin-6 blockade
in ocular inflammatory diseases[ J]. Clin Exp Immunol, 2014, 176(3):
301-309.Mesquida M, Leszczynska A, Lloren? V, et al. Interleukin-6 blockade
in ocular inflammatory diseases[ J]. Clin Exp Immunol, 2014, 176(3):
301-309.
16、Letko E, Yeh S, Foster CS, et al. Efficacy and safety of intravenous
secukinumab in noninfectious uveitis requiring steroid-sparing
immunosuppressive therapy[J]. Ophthalmology, 2015, 122(5): 939-948.Letko E, Yeh S, Foster CS, et al. Efficacy and safety of intravenous
secukinumab in noninfectious uveitis requiring steroid-sparing
immunosuppressive therapy[J]. Ophthalmology, 2015, 122(5): 939-948.
17、Tappeiner C, Heinz C, Ganser G, et al. Is tocilizumab an effective
option for treatment of refractory uveitis associated with juvenile
idiopathic arthritis?[ J]. J Rheumatol, 2012, 39(6): 1294-5.Tappeiner C, Heinz C, Ganser G, et al. Is tocilizumab an effective
option for treatment of refractory uveitis associated with juvenile
idiopathic arthritis?[ J]. J Rheumatol, 2012, 39(6): 1294-5.
18、Hirano T, Ohguro N, Hohki S, et al. A case of Beh?et’s disease treated
with a humanized anti-interleukin-6 receptor antibody, tocilizumab[ J].
Mod Rheumatol, 2012, 22(2): 298-302.Hirano T, Ohguro N, Hohki S, et al. A case of Beh?et’s disease treated
with a humanized anti-interleukin-6 receptor antibody, tocilizumab[ J].
Mod Rheumatol, 2012, 22(2): 298-302.
19、Oshitari T, Kajita F, Tobe A, et al. Refractory uveitis in patient with
castleman disease successfully treated with tocilizumab[ J]. Case Rep
Ophthalmol Med, 2012, 2012: 968180.Oshitari T, Kajita F, Tobe A, et al. Refractory uveitis in patient with
castleman disease successfully treated with tocilizumab[ J]. Case Rep
Ophthalmol Med, 2012, 2012: 968180.
20、Tsang AC, Roth J, Gottlieb C. Tocilizumab for severe chronic anterior
uveitis associated with juvenile idiopathic arthritis in a pediatric
patient[ J]. Ocul Immunol Inflamm, 2014, 22(2): 155-157.Tsang AC, Roth J, Gottlieb C. Tocilizumab for severe chronic anterior
uveitis associated with juvenile idiopathic arthritis in a pediatric
patient[ J]. Ocul Immunol Inflamm, 2014, 22(2): 155-157.
21、Gupta R, Srivastava D, Sahu M, et al. Artificial intelligence to deep
learning: machine intelligence approach for drug discovery[ J]. Mol
Divers, 2021, 25(3): 1315-1360.Gupta R, Srivastava D, Sahu M, et al. Artificial intelligence to deep
learning: machine intelligence approach for drug discovery[ J]. Mol
Divers, 2021, 25(3): 1315-1360.
22、Durrant JD, McCammon JA. NNScore: a neural-network-based scoring
function for the characterization of protein-ligand complexes[ J]. J
Chem Inf Model, 2010, 50(10): 1865-71.Durrant JD, McCammon JA. NNScore: a neural-network-based scoring
function for the characterization of protein-ligand complexes[ J]. J
Chem Inf Model, 2010, 50(10): 1865-71.
23、Brylinski M, Lee SY, Zhou H, et al. The utility of geometrical and
chemical restraint information extracted from predicted ligand-binding
sites in protein structure refinement[ J]. J Struct Biol, 2011, 173(3):
558-569.Brylinski M, Lee SY, Zhou H, et al. The utility of geometrical and
chemical restraint information extracted from predicted ligand-binding
sites in protein structure refinement[ J]. J Struct Biol, 2011, 173(3):
558-569.
24、Li GB, Yang LL, Wang WJ, et al. ID-Score: a new empirical scoring
function based on a comprehensive set of descriptors related to protein-
ligand interactions[ J]. J Chem Inf Model, 2013, 53(3): 592-600.Li GB, Yang LL, Wang WJ, et al. ID-Score: a new empirical scoring
function based on a comprehensive set of descriptors related to protein-
ligand interactions[ J]. J Chem Inf Model, 2013, 53(3): 592-600.
25、Shang J, Dai X, Li Y, et al. HybridSim-VS: a web server for large-scale
ligand-based virtual screening using hybrid similarity recognition
techniques[ J]. Bioinformatics, 2017, 33(21): 3480-3481.Shang J, Dai X, Li Y, et al. HybridSim-VS: a web server for large-scale
ligand-based virtual screening using hybrid similarity recognition
techniques[ J]. Bioinformatics, 2017, 33(21): 3480-3481.
26、Zoete V, Daina A, Bovigny C, et al. SwissSimilarity: a web tool for low
to ultra high throughput ligand-based virtual screening[ J]. J Chem Inf
Model, 2016, 56(8): 1399-404.Zoete V, Daina A, Bovigny C, et al. SwissSimilarity: a web tool for low
to ultra high throughput ligand-based virtual screening[ J]. J Chem Inf
Model, 2016, 56(8): 1399-404.
27、Banegas-Luna AJ, Cerón-Carrasco JP, Puertas-Martín S, et al.
BRUSELAS: HPC generic and customizable software architecture for
3D ligand-based virtual screening of large molecular databases[ J]. J
Chem Inf Model, 2019, 59(6): 2805-2817.Banegas-Luna AJ, Cerón-Carrasco JP, Puertas-Martín S, et al.
BRUSELAS: HPC generic and customizable software architecture for
3D ligand-based virtual screening of large molecular databases[ J]. J
Chem Inf Model, 2019, 59(6): 2805-2817.
28、Lin X, Duan X, Jacobs C, et al. High-throughput brain activity
mapping and machine learning as a foundation for systems
neuropharmacology[ J]. Nat Commun, 2018, 9(1): 5142.Lin X, Duan X, Jacobs C, et al. High-throughput brain activity
mapping and machine learning as a foundation for systems
neuropharmacology[ J]. Nat Commun, 2018, 9(1): 5142.
29、宋硕, 王若男, 钱仪敏, 等. 眼科药物的药动学研究策略[ J]. 中国
新药杂志, 2021, 30(18): 1668-1674.
SONG Shuo, WANG Ruonan, QIAN Yimin, et al. Pharmacokinetic
research strategy of ophthalmic drugs[ J]. Chinese Journal of New
Drugs, 2021, 30(18): 1668-1674.宋硕, 王若男, 钱仪敏, 等. 眼科药物的药动学研究策略[ J]. 中国
新药杂志, 2021, 30(18): 1668-1674.
SONG Shuo, WANG Ruonan, QIAN Yimin, et al. Pharmacokinetic
research strategy of ophthalmic drugs[ J]. Chinese Journal of New
Drugs, 2021, 30(18): 1668-1674.
30、Singh M, Murriel CL, Johnson L. Genetically engineered mouse
models: closing the gap between preclinical data and trial outcomes[ J].
Cancer Res, 2012, 72(11): 2695-700.Singh M, Murriel CL, Johnson L. Genetically engineered mouse
models: closing the gap between preclinical data and trial outcomes[ J].
Cancer Res, 2012, 72(11): 2695-700.
31、Bennani YL. Drug discovery in the next decade: innovation needed
ASAP[ J]. Drug Discov Today, 2011, 16(17/18): 779-792.Bennani YL. Drug discovery in the next decade: innovation needed
ASAP[ J]. Drug Discov Today, 2011, 16(17/18): 779-792.
32、Bouzom F, Ball K , Perdaems N, et al. Physiologically based
pharmacokinetic (PBPK) modelling tools: how to fit with our
needs?[ J]. Biopharm Drug Dispos, 2012, 33(2): 55-71.Bouzom F, Ball K , Perdaems N, et al. Physiologically based
pharmacokinetic (PBPK) modelling tools: how to fit with our
needs?[ J]. Biopharm Drug Dispos, 2012, 33(2): 55-71.
33、Jiang W, Kim S, Zhang X, et al. The role of predictive biopharmaceutical
modeling and simulation in drug development and regulatory
evaluation[ J]. Int J Pharm, 2011, 418(2): 151-160.Jiang W, Kim S, Zhang X, et al. The role of predictive biopharmaceutical
modeling and simulation in drug development and regulatory
evaluation[ J]. Int J Pharm, 2011, 418(2): 151-160.
34、Kostewicz ES, Aarons L, Bergstrand M, et al. PBPK models for the
prediction of in vivo performance of oral dosage forms[ J]. Eur J Pharm
Sci, 2014, 57: 300-321.Kostewicz ES, Aarons L, Bergstrand M, et al. PBPK models for the
prediction of in vivo performance of oral dosage forms[ J]. Eur J Pharm
Sci, 2014, 57: 300-321.
35、Gukasyan HJ, Hailu S, Karami TK, et al. Ocular biopharmaceutics:
impact of modeling and simulation on topical ophthalmic formulation
development[ J]. Drug Discov Today, 2019, 24(8): 1587-1597.Gukasyan HJ, Hailu S, Karami TK, et al. Ocular biopharmaceutics:
impact of modeling and simulation on topical ophthalmic formulation
development[ J]. Drug Discov Today, 2019, 24(8): 1587-1597.
36、Kovacs K, Wagley S, Quirk MT, et al. Pharmacokinetic study of vitreous
and serum concentrations of triamcinolone acetonide after posterior
sub-tenon's injection[ J]. Am J Ophthalmol, 2012, 153(5): 939-948.Kovacs K, Wagley S, Quirk MT, et al. Pharmacokinetic study of vitreous
and serum concentrations of triamcinolone acetonide after posterior
sub-tenon's injection[ J]. Am J Ophthalmol, 2012, 153(5): 939-948.
37、Missel PJ, Horner M, Muralikrishnan R. Simulating dissolution of
intravitreal triamcinolone acetonide suspensions in an anatomically
accurate rabbit eye model[ J]. Pharm Res, 2010, 27(8): 1530-1546.Missel PJ, Horner M, Muralikrishnan R. Simulating dissolution of
intravitreal triamcinolone acetonide suspensions in an anatomically
accurate rabbit eye model[ J]. Pharm Res, 2010, 27(8): 1530-1546.
38、Deng F, Ranta VP, Kidron H, et al. General pharmacokinetic model for
topically administered ocular drug dosage forms[ J]. Pharm Res, 2016,
33(11): 2680-2690.Deng F, Ranta VP, Kidron H, et al. General pharmacokinetic model for
topically administered ocular drug dosage forms[ J]. Pharm Res, 2016,
33(11): 2680-2690.
39、Denniston AK, Dick AD. Systemic therapies for inflammatory eye
disease: past, present and future[ J]. BMC Ophthalmol, 2013, 13: 18.Denniston AK, Dick AD. Systemic therapies for inflammatory eye
disease: past, present and future[ J]. BMC Ophthalmol, 2013, 13: 18.
40、Deyati A, Younesi E, Hofmann-Apitius M, et al. Challenges and
opportunities for oncology biomarker discovery[ J]. Drug Discov
Today, 2013, 18(13/14): 614-624.Deyati A, Younesi E, Hofmann-Apitius M, et al. Challenges and
opportunities for oncology biomarker discovery[ J]. Drug Discov
Today, 2013, 18(13/14): 614-624.
41、Walker I, Newell H. Do molecularly targeted agents in oncology have
reduced attrition rates?[ J]. Nat Rev Drug Discov, 2009, 8(1): 15-16.Walker I, Newell H. Do molecularly targeted agents in oncology have
reduced attrition rates?[ J]. Nat Rev Drug Discov, 2009, 8(1): 15-16.
42、Santos R, Ursu O, Gaulton A, et al. A comprehensive map of molecular
drug targets[ J]. Nat Rev Drug Discov, 2017, 16(1): 19-34.Santos R, Ursu O, Gaulton A, et al. A comprehensive map of molecular
drug targets[ J]. Nat Rev Drug Discov, 2017, 16(1): 19-34.
43、Nagai N, Umachi K, Otake H, et al. Ophthalmic in situ gelling system
containing lanosterol nanoparticles delays collapse of lens structure in
shumiya cataract rats[ J]. Pharmaceutics, 2020, 12(7): 629.Nagai N, Umachi K, Otake H, et al. Ophthalmic in situ gelling system
containing lanosterol nanoparticles delays collapse of lens structure in
shumiya cataract rats[ J]. Pharmaceutics, 2020, 12(7): 629.
44、Ye T, Yuan K , Zhang W, et al. Prodr ugs incor porated into
nanotechnology-based drug delivery systems for possible improvement
in bioavailability of ocular drugs delivery[ J]. Asian J Pharm Sci, 2013,
8(4): 207.Ye T, Yuan K , Zhang W, et al. Prodr ugs incor porated into
nanotechnology-based drug delivery systems for possible improvement
in bioavailability of ocular drugs delivery[ J]. Asian J Pharm Sci, 2013,
8(4): 207.
45、Liu C, Tai L, Zhang W, et al. Penetratin, a potentially powerful
absorption enhancer for noninvasive intraocular drug delivery[ J]. Mol
Pharm, 2014, 11(4): 1218-1227.Liu C, Tai L, Zhang W, et al. Penetratin, a potentially powerful
absorption enhancer for noninvasive intraocular drug delivery[ J]. Mol
Pharm, 2014, 11(4): 1218-1227.
46、Varela-Fernández R, Díaz-Tomé V, Luaces-Rodríguez A, et al. Drug
delivery to the posterior segment of the eye: biopharmaceutic and
pharmacokinetic considerations[ J]. Pharmaceutics, 2020, 12(3): 269.Varela-Fernández R, Díaz-Tomé V, Luaces-Rodríguez A, et al. Drug
delivery to the posterior segment of the eye: biopharmaceutic and
pharmacokinetic considerations[ J]. Pharmaceutics, 2020, 12(3): 269.
47、Gaudana R, Ananthula HK, Parenky A, et al. Ocular drug delivery[ J].
AAPS J, 2010, 12(3): 348-360.Gaudana R, Ananthula HK, Parenky A, et al. Ocular drug delivery[ J].
AAPS J, 2010, 12(3): 348-360.
48、中华人民共和国教育部. 高等学校人工智能创新行动计划
[EB/OL]. [2018-04-03]. http://www.moe.gov.cn/srcsite/A16/
s7062/201804/t20180410_332722.html?from=groupmessage&isappi
nstalled=0.
Ministry of Education of the People’s Republic of China. Action Plan for
Artifcial Intelligence Innovation in Colleges and Universities[EB/OL].
[2018-04-03]. http://www.moe.gov.cn/srcsite/A16/s7062/201804/
t20180410_332722.html?from=groupmessage&isappinstalled=0.中华人民共和国教育部. 高等学校人工智能创新行动计划
[EB/OL]. [2018-04-03]. http://www.moe.gov.cn/srcsite/A16/
s7062/201804/t20180410_332722.html?from=groupmessage&isappi
nstalled=0.
Ministry of Education of the People’s Republic of China. Action Plan for
Artifcial Intelligence Innovation in Colleges and Universities[EB/OL].
[2018-04-03]. http://www.moe.gov.cn/srcsite/A16/s7062/201804/
t20180410_332722.html?from=groupmessage&isappinstalled=0.