1、Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism,
and disease[ J]. Cell, 2017, 168(6): 960-976. DOI: 10.1016/
j.cell.2017.02.004.Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism,
and disease[ J]. Cell, 2017, 168(6): 960-976. DOI: 10.1016/
j.cell.2017.02.004.
2、Mur ugan A K . mTOR : role in cancer, metastasi s and dr ug
resistance[ J]. Semin Cancer Biol, 2019, 59: 92-111. DOI: 10.1016/
j.semcancer.2019.07.003.Mur ugan A K . mTOR : role in cancer, metastasi s and dr ug
resistance[ J]. Semin Cancer Biol, 2019, 59: 92-111. DOI: 10.1016/
j.semcancer.2019.07.003.
3、Hua H, Kong Q, Zhang H, et al. Targeting mTOR for cancer therapy[ J].
J Hematol Oncol, 2019, 12(1): 71. DOI: 10.1186/s13045-019-0754-1.Hua H, Kong Q, Zhang H, et al. Targeting mTOR for cancer therapy[ J].
J Hematol Oncol, 2019, 12(1): 71. DOI: 10.1186/s13045-019-0754-1.
4、Bao XY, Sun M, Peng TT, et al. TRIB3 promotes proliferation,
migration, and invasion of retinoblastoma cells by activating the AKT/
mTOR signaling pathway[ J]. Cancer Biomark, 2021, 31(4): 307-315.
DOI: 10.3233/CBM-200050.Bao XY, Sun M, Peng TT, et al. TRIB3 promotes proliferation,
migration, and invasion of retinoblastoma cells by activating the AKT/
mTOR signaling pathway[ J]. Cancer Biomark, 2021, 31(4): 307-315.
DOI: 10.3233/CBM-200050.
5、Wang D, Xu C, Yang W, et al. E3 ligase RNF167 and deubiquitinase STAMBPL1 modulate mTOR and cancer progression[ J]. Mol Cell,
2022, 82(4): 770-784.e9. DOI: 10.1016/j.molcel.2022.01.002.Wang D, Xu C, Yang W, et al. E3 ligase RNF167 and deubiquitinase STAMBPL1 modulate mTOR and cancer progression[ J]. Mol Cell,
2022, 82(4): 770-784.e9. DOI: 10.1016/j.molcel.2022.01.002.
6、Wu HT, Lin J, Liu YE, et al. Luteolin suppresses androgen receptor-positive triple-negative breast cancer cell proliferation and metastasis
by epigenetic regulation of MMP9 expression via the AKT/mTOR
signaling pathway[ J]. Phytomedicine, 2021, 81: 153437. DOI:
10.1016/j.phymed.2020.153437.Wu HT, Lin J, Liu YE, et al. Luteolin suppresses androgen receptor-positive triple-negative breast cancer cell proliferation and metastasis
by epigenetic regulation of MMP9 expression via the AKT/mTOR
signaling pathway[ J]. Phytomedicine, 2021, 81: 153437. DOI:
10.1016/j.phymed.2020.153437.
7、Zhao Z, Zhang Y, Zhang C, et al. TGF-β promotes pericyte-myofibroblast transition in subretinal fibrosis through the Smad2/3 and
Akt/mTOR pathways[ J]. Exp Mol Med, 2022, 54(5): 673-684. DOI:
10.1038/s12276-022-00778-0.Zhao Z, Zhang Y, Zhang C, et al. TGF-β promotes pericyte-myofibroblast transition in subretinal fibrosis through the Smad2/3 and
Akt/mTOR pathways[ J]. Exp Mol Med, 2022, 54(5): 673-684. DOI:
10.1038/s12276-022-00778-0.
8、Morita M, Gravel SP, Hulea L, et al. mTOR coordinates protein
synthesis, mitochondrial activity and proliferation[ J]. Cell Cycle, 2015,
14(4): 473-480. DOI: 10.4161/15384101.2014.991572.Morita M, Gravel SP, Hulea L, et al. mTOR coordinates protein
synthesis, mitochondrial activity and proliferation[ J]. Cell Cycle, 2015,
14(4): 473-480. DOI: 10.4161/15384101.2014.991572.
9、Han A, Mukha D, Chua V, et al. Co-targeting FASN and mTOR
suppresses uveal melanoma growth[ J]. Cancers, 2023, 15(13): 3451.
DOI: 10.3390/cancers15133451.Han A, Mukha D, Chua V, et al. Co-targeting FASN and mTOR
suppresses uveal melanoma growth[ J]. Cancers, 2023, 15(13): 3451.
DOI: 10.3390/cancers15133451.
10、Zhao XR, Zhang MC, Xie HT, et al. Expression of mTOR in primary
pterygium and its correlation with α-smooth muscle actin[ J]. Eur J
Ophthalmol, 2017, 27(6): 664-669. DOI: 10.5301/ejo.5000985.Zhao XR, Zhang MC, Xie HT, et al. Expression of mTOR in primary
pterygium and its correlation with α-smooth muscle actin[ J]. Eur J
Ophthalmol, 2017, 27(6): 664-669. DOI: 10.5301/ejo.5000985.
11、Szwed A, Kim E, Jacinto E. Regulation and metabolic functions of
mTORC1 and mTORC2[ J]. Physiol Rev, 2021, 101(3): 1371-1426.
DOI: 10.1152/physrev.00026.2020.Szwed A, Kim E, Jacinto E. Regulation and metabolic functions of
mTORC1 and mTORC2[ J]. Physiol Rev, 2021, 101(3): 1371-1426.
DOI: 10.1152/physrev.00026.2020.
12、Kim LC, Cook RS, Chen J. mTORC1 and mTORC2 in cancer and the
tumor microenvironment[ J]. Oncogene, 2017, 36(16): 2191-2201.
DOI: 10.1038/onc.2016.363.Kim LC, Cook RS, Chen J. mTORC1 and mTORC2 in cancer and the
tumor microenvironment[ J]. Oncogene, 2017, 36(16): 2191-2201.
DOI: 10.1038/onc.2016.363.
13、Fu W, Hall MN. Regulation of mTORC2 signaling[ J]. Genes, 2020,
11(9): 1045. DOI: 10.3390/genes11091045.Fu W, Hall MN. Regulation of mTORC2 signaling[ J]. Genes, 2020,
11(9): 1045. DOI: 10.3390/genes11091045.
14、Bernard M, Yang B, Migneault F, et al. Autophagy drives fibroblast
senescence through MTORC2 regulation[ J]. Autophagy, 2020,
16(11): 2004-2016. DOI: 10.1080/15548627.2020.1713640.Bernard M, Yang B, Migneault F, et al. Autophagy drives fibroblast
senescence through MTORC2 regulation[ J]. Autophagy, 2020,
16(11): 2004-2016. DOI: 10.1080/15548627.2020.1713640.
15、江华维, 刘霞, 王艳, 等. 翼状胬肉发病机制的研究进展[ J]. 昆明
医科大学学报, 2023, 44(1): 144-150. DOI: 10.12259/j.issn.2095-
610X.S20230125.
Jiang HW, Liu X, Wang Y, et al. Research progress on the pathogenesis
of pterygium[ J]. J Kunming Med Univ, 2023, 44(1): 144-150. DOI:
10.12259/j.issn.2095-610X.S20230125.江华维, 刘霞, 王艳, 等. 翼状胬肉发病机制的研究进展[ J]. 昆明
医科大学学报, 2023, 44(1): 144-150. DOI: 10.12259/j.issn.2095-
610X.S20230125.
Jiang HW, Liu X, Wang Y, et al. Research progress on the pathogenesis
of pterygium[ J]. J Kunming Med Univ, 2023, 44(1): 144-150. DOI:
10.12259/j.issn.2095-610X.S20230125.
16、刘江, 文杭, 项敏泓. 眼部成纤维细胞在眼科疾病中的研究进展
[ J]. 眼科新进展, 2021, 41(12): 1183-1187. DOI: 10.13389/j.cnki.
rao.2021.0247.
Liu J, Wen H, Xiang MH. Research progress in ocular fibroblasts[ J].
Recent Adv Ophthalmol, 2021, 41(12): 1183-1187. DOI: 10.13389/
j.cnki.rao.2021.0247.刘江, 文杭, 项敏泓. 眼部成纤维细胞在眼科疾病中的研究进展
[ J]. 眼科新进展, 2021, 41(12): 1183-1187. DOI: 10.13389/j.cnki.
rao.2021.0247.
Liu J, Wen H, Xiang MH. Research progress in ocular fibroblasts[ J].
Recent Adv Ophthalmol, 2021, 41(12): 1183-1187. DOI: 10.13389/
j.cnki.rao.2021.0247.
17、赵新荣. mTOR/p70S6K信号通路在翼状胬肉成纤维细胞增殖和
转分化中的作用研究[D]. 武汉: 华中科技大学, 2018.
Zhao XR . The role of mTOR/p70S6K signaling pathway in the
regulation of pterygium fibroblasts on their proliferation and
transdifferentiation[D].Wuhan: Huazhong University of Science and
Technology, 2018.赵新荣. mTOR/p70S6K信号通路在翼状胬肉成纤维细胞增殖和
转分化中的作用研究[D]. 武汉: 华中科技大学, 2018.
Zhao XR . The role of mTOR/p70S6K signaling pathway in the
regulation of pterygium fibroblasts on their proliferation and
transdifferentiation[D].Wuhan: Huazhong University of Science and
Technology, 2018.
18、Liu Y, Xu H, An M. mTORC1 regulates apoptosis and cell proliferation
in pterygium via targeting autophagy and FGFR3[ J]. Sci Rep, 2017,
7(1): 7339. DOI: 10.1038/s41598-017-07844-yLiu Y, Xu H, An M. mTORC1 regulates apoptosis and cell proliferation
in pterygium via targeting autophagy and FGFR3[ J]. Sci Rep, 2017,
7(1): 7339. DOI: 10.1038/s41598-017-07844-y
19、Kim SW, Kim HI, Thapa B, et al. Critical role of mTORC2-akt signaling
in TGF-β1-induced myofibroblast differentiation of human pterygium
fibroblasts[ J]. Invest Ophthalmol Vis Sci, 2019, 60(1): 82-92. DOI:
10.1167/iovs.18-25376.Kim SW, Kim HI, Thapa B, et al. Critical role of mTORC2-akt signaling
in TGF-β1-induced myofibroblast differentiation of human pterygium
fibroblasts[ J]. Invest Ophthalmol Vis Sci, 2019, 60(1): 82-92. DOI:
10.1167/iovs.18-25376.
20、Zhong X, Xu P, Chen K, et al. A novel lncRNA lnc-PPRL promotes
pter ygium development by activating PI3K/PDK1 signaling
pathway[ J]. Exp Eye Res, 2022, 219: 109034. DOI: 10.1016/
j.exer.2022.109034.Zhong X, Xu P, Chen K, et al. A novel lncRNA lnc-PPRL promotes
pter ygium development by activating PI3K/PDK1 signaling
pathway[ J]. Exp Eye Res, 2022, 219: 109034. DOI: 10.1016/
j.exer.2022.109034.
21、Han S, Chen Y, Gao Y, et al. MicroRNA-218-5p inhibit the migration
and proliferation of pterygium epithelial cells by targeting EGFR via
PI3K/Akt/mTOR signaling pathway[ J]. Exp Eye Res, 2019, 178: 37-
45. DOI: 10.1016/j.exer.2018.09.010.Han S, Chen Y, Gao Y, et al. MicroRNA-218-5p inhibit the migration
and proliferation of pterygium epithelial cells by targeting EGFR via
PI3K/Akt/mTOR signaling pathway[ J]. Exp Eye Res, 2019, 178: 37-
45. DOI: 10.1016/j.exer.2018.09.010.
22、Liu W, Lin T, Gong L. ZD6474 attenuates fibrosis and inhibits
neovascularization in human pterygium by suppressing AKT-mTOR
signaling pathway[ J]. J Ocul Pharmacol Ther, 2023, 39(2): 128-138.
DOI: 10.1089/jop.2022.0127.Liu W, Lin T, Gong L. ZD6474 attenuates fibrosis and inhibits
neovascularization in human pterygium by suppressing AKT-mTOR
signaling pathway[ J]. J Ocul Pharmacol Ther, 2023, 39(2): 128-138.
DOI: 10.1089/jop.2022.0127.
23、张纯涛, 何媛, 秦静, 等. 兔眼翼状胬肉模型建立的预实验
分析[ J]. 中国伤残医学, 2013, 21(2): 25-27. DOI: 10.3969/
j.issn.1673-6567.2013.02.020.
Zhang CT, He Y, Qin J, et al. Experiment of pterygium model in
rabbit eye[ J]. Chin J Trauma Disabil Med, 2013, 21(2): 25-27. DOI:
10.3969/j.issn.1673-6567.2013.02.020.张纯涛, 何媛, 秦静, 等. 兔眼翼状胬肉模型建立的预实验
分析[ J]. 中国伤残医学, 2013, 21(2): 25-27. DOI: 10.3969/
j.issn.1673-6567.2013.02.020.
Zhang CT, He Y, Qin J, et al. Experiment of pterygium model in
rabbit eye[ J]. Chin J Trauma Disabil Med, 2013, 21(2): 25-27. DOI:
10.3969/j.issn.1673-6567.2013.02.020.
24、Sun R X , Z hu H J, Z hang YR , et al . A LKBH5 causesret inal
pigmentepitheliumanomalies and choroidal neovascularization in age-related macular degeneration via the AKT/mTOR pathway[ J]. Cell
Rep, 2023, 42(7): 112779. DOI: 10.1016/j.celrep.2023.112779.Sun R X , Z hu H J, Z hang YR , et al . A LKBH5 causesret inal
pigmentepitheliumanomalies and choroidal neovascularization in age-related macular degeneration via the AKT/mTOR pathway[ J]. Cell
Rep, 2023, 42(7): 112779. DOI: 10.1016/j.celrep.2023.112779.
25、Kaarniranta K, Blasiak J, Liton P, et al. Autophagy in age-related
macular degeneration[ J]. Autophagy, 2023, 19(2): 388-400. DOI:
10.1080/15548627.2022.2069437.Kaarniranta K, Blasiak J, Liton P, et al. Autophagy in age-related
macular degeneration[ J]. Autophagy, 2023, 19(2): 388-400. DOI:
10.1080/15548627.2022.2069437.
26、Cai J, Litwin C, Cheng R, et al. DARPP32, a target of hyperactive
mTORC1 in the retinal pigment epithelium[ J]. Proc Natl Acad Sci U S
A, 2022, 119(33): e2207489119. DOI: 10.1073/pnas.2207489119.Cai J, Litwin C, Cheng R, et al. DARPP32, a target of hyperactive
mTORC1 in the retinal pigment epithelium[ J]. Proc Natl Acad Sci U S
A, 2022, 119(33): e2207489119. DOI: 10.1073/pnas.2207489119.
27、Xie X, Li D, Cui Y, et al. Decorin protects retinal pigment epithelium
cells from oxidative stress and apoptosis via AMPK-mTOR-regulated
autophagy[ J]. Oxid Med Cell Longev, 2022, 2022: 3955748. DOI:
10.1155/2022/3955748.Xie X, Li D, Cui Y, et al. Decorin protects retinal pigment epithelium
cells from oxidative stress and apoptosis via AMPK-mTOR-regulated
autophagy[ J]. Oxid Med Cell Longev, 2022, 2022: 3955748. DOI:
10.1155/2022/3955748.
28、Wu J, Chen J, Hu J, et al. CircRNA Ux s1/miR-335-5p/PGF
axis regulates choroidal neovascularization via the mTOR/p70
S6k pathway[ J]. Transl Res, 2023, 256: 41-55. DOI: 10.1016/
j.trsl.2023.01.003.Wu J, Chen J, Hu J, et al. CircRNA Ux s1/miR-335-5p/PGF
axis regulates choroidal neovascularization via the mTOR/p70
S6k pathway[ J]. Transl Res, 2023, 256: 41-55. DOI: 10.1016/
j.trsl.2023.01.003.
29、Ma J, Sun Y, López FJ, et al. Blockage of PI3K/mTOR pathways inhibits
laser-induced choroidal neovascularization and improves outcomes
relative to VEGF-A suppression alone[ J]. Invest Ophthalmol Vis Sci,
2016, 57(7): 3138-3144. DOI: 10.1167/iovs.15-18795.Ma J, Sun Y, López FJ, et al. Blockage of PI3K/mTOR pathways inhibits
laser-induced choroidal neovascularization and improves outcomes
relative to VEGF-A suppression alone[ J]. Invest Ophthalmol Vis Sci,
2016, 57(7): 3138-3144. DOI: 10.1167/iovs.15-18795.
30、Park TK, Lee SH, Choi JS, et al. Adeno-associated viral vector-mediated
mTOR inhibition by short hairpin RNA suppresses laser-induced
choroidal neovascularization[ J]. Mol Ther Nucleic Acids, 2017, 8: 26-
35. DOI: 10.1016/j.omtn.2017.05.012.Park TK, Lee SH, Choi JS, et al. Adeno-associated viral vector-mediated
mTOR inhibition by short hairpin RNA suppresses laser-induced
choroidal neovascularization[ J]. Mol Ther Nucleic Acids, 2017, 8: 26-
35. DOI: 10.1016/j.omtn.2017.05.012.
31、王菲菲. 雷帕霉素对实验性青光眼保护机制的研究[D]. 南昌:
南昌大学, 2023. DOI: 10.27232/d.cnki.gnchu.2023.000021.
Wang FF. Research on the protective mechanism of rapamycin on
experimental glaucoma[D].Nanchang: Nanchang University, 2023.王菲菲. 雷帕霉素对实验性青光眼保护机制的研究[D]. 南昌:
南昌大学, 2023. DOI: 10.27232/d.cnki.gnchu.2023.000021.
Wang FF. Research on the protective mechanism of rapamycin on
experimental glaucoma[D].Nanchang: Nanchang University, 2023.
32、Tribble JR, Hui F, Quintero H, et al. Neuroprotection in glaucoma:
mechanisms beyond intraocular pressure lowering[ J]. Mol Aspects
Med, 2023, 92: 101193. DOI: 10.1016/j.mam.2023.101193.Tribble JR, Hui F, Quintero H, et al. Neuroprotection in glaucoma:
mechanisms beyond intraocular pressure lowering[ J]. Mol Aspects
Med, 2023, 92: 101193. DOI: 10.1016/j.mam.2023.101193.
33、Rodr%C3%ADguez-Muela%20N%2C%20Germain%20F%2C%20Mari%C3%B1o%20G%2C%20et%20al.%20Autophagy%20promotes%20%0Asurvival%20of%20retinal%20ganglion%20cells%20after%20optic%20nerve%20axotomy%20in%20mice%5B%20J%5D.%20%0ACell%20Death%20Differ%2C%202012%2C%2019(1)%3A%20162-169.%20DOI%3A%2010.1038%2Fcdd.2011.88.Rodr%C3%ADguez-Muela%20N%2C%20Germain%20F%2C%20Mari%C3%B1o%20G%2C%20et%20al.%20Autophagy%20promotes%20%0Asurvival%20of%20retinal%20ganglion%20cells%20after%20optic%20nerve%20axotomy%20in%20mice%5B%20J%5D.%20%0ACell%20Death%20Differ%2C%202012%2C%2019(1)%3A%20162-169.%20DOI%3A%2010.1038%2Fcdd.2011.88.
34、Subramani M, Hook MV, Rajamoorthy M, et al. Human retinal
ganglion cells respond to evolutionarily conserved chemotropic
cues for intra retinal guidance and regeneration[ J]. bioRxiv, 2023:
2023.02.01.526677. DOI: 10.1101/2023.02.01.526677.Subramani M, Hook MV, Rajamoorthy M, et al. Human retinal
ganglion cells respond to evolutionarily conserved chemotropic
cues for intra retinal guidance and regeneration[ J]. bioRxiv, 2023:
2023.02.01.526677. DOI: 10.1101/2023.02.01.526677.
35、Harder JM, Guymer C, Wood JPM, et al. Disturbed glucose and
pyruvate metabolism in glaucoma with neuroprotection by pyruvate or
rapamycin[ J]. Proc Natl Acad Sci U S A, 2020, 117(52): 33619-33627.
DOI: 10.1073/pnas.2014213117.Harder JM, Guymer C, Wood JPM, et al. Disturbed glucose and
pyruvate metabolism in glaucoma with neuroprotection by pyruvate or
rapamycin[ J]. Proc Natl Acad Sci U S A, 2020, 117(52): 33619-33627.
DOI: 10.1073/pnas.2014213117.
36、Wang F, Song Y, Liu P, et al. Rapamycin suppresses neuroinflammation
and protects retinal ganglion cell loss after optic nerve crush[ J].
Int Immunopharmacol, 2023, 119: 110171. DOI: 10.1016/
j.intimp.2023.110171.Wang F, Song Y, Liu P, et al. Rapamycin suppresses neuroinflammation
and protects retinal ganglion cell loss after optic nerve crush[ J].
Int Immunopharmacol, 2023, 119: 110171. DOI: 10.1016/
j.intimp.2023.110171.
37、袁安琪, 彭麟景, 杜红彦. 自噬在青光眼视神经损伤中的作用及
中医药的干预研究进展[ J]. 中国实验方剂学杂志, 2021, 27(19):
233-242. DOI: 10.13422/j.cnki.syfjx.20211898.
Yuan AQ, Peng LJ, Du HY. Role of autophagy in glaucoma-induced
optic nerve injury and intervention with traditional Chinese medicine:
a review[ J]. Chin J Exp Tradit Med Formulae, 2021, 27(19): 233-242.
DOI: 10.13422/j.cnki.syfjx.20211898.袁安琪, 彭麟景, 杜红彦. 自噬在青光眼视神经损伤中的作用及
中医药的干预研究进展[ J]. 中国实验方剂学杂志, 2021, 27(19):
233-242. DOI: 10.13422/j.cnki.syfjx.20211898.
Yuan AQ, Peng LJ, Du HY. Role of autophagy in glaucoma-induced
optic nerve injury and intervention with traditional Chinese medicine:
a review[ J]. Chin J Exp Tradit Med Formulae, 2021, 27(19): 233-242.
DOI: 10.13422/j.cnki.syfjx.20211898.
38、杨稀瑞, 王继雪, 董霏雪, 等. 通窍明目汤通过p53/AMPK/mTOR
信号通路介导的细胞自噬改善青光眼视网膜神经节细胞损伤
的机制研究[ J]. 世界科学技术-中医药现代化, 2023, 25(4): 1375-
1381.
Yang XR, Wang JX, Dong FX, et al. Autophagy mediated by Tongqiao
Mingmu Decoction through p53/AMPK/mTOR signaling pathway
mechanism of improving retinal ganglion cell injury in glaucoma[ J].
Mod Tradit Chin Med Mater Med World Sci Technol, 2023, 25(4):
1375-1381.杨稀瑞, 王继雪, 董霏雪, 等. 通窍明目汤通过p53/AMPK/mTOR
信号通路介导的细胞自噬改善青光眼视网膜神经节细胞损伤
的机制研究[ J]. 世界科学技术-中医药现代化, 2023, 25(4): 1375-
1381.
Yang XR, Wang JX, Dong FX, et al. Autophagy mediated by Tongqiao
Mingmu Decoction through p53/AMPK/mTOR signaling pathway
mechanism of improving retinal ganglion cell injury in glaucoma[ J].
Mod Tradit Chin Med Mater Med World Sci Technol, 2023, 25(4):
1375-1381.
39、Gurung HR, Carr MM, Bryant K, et al. Fibroblast growth factor-2
drives and maintains progressive corneal neovascularization following
HSV-1 infection[ J]. Mucosal Immunol, 2018, 11(1): 172-185. DOI:
10.1038/mi.2017.26.Gurung HR, Carr MM, Bryant K, et al. Fibroblast growth factor-2
drives and maintains progressive corneal neovascularization following
HSV-1 infection[ J]. Mucosal Immunol, 2018, 11(1): 172-185. DOI:
10.1038/mi.2017.26.
40、Li J, Du S, Shi Y, et al. Rapamycin ameliorates corneal injury after
alkali burn through methylation modification in mouse TSC1 and
mTOR genes[ J]. Exp Eye Res, 2021, 203: 108399. DOI: 10.1016/
j.exer.2020.108399.Li J, Du S, Shi Y, et al. Rapamycin ameliorates corneal injury after
alkali burn through methylation modification in mouse TSC1 and
mTOR genes[ J]. Exp Eye Res, 2021, 203: 108399. DOI: 10.1016/
j.exer.2020.108399.
41、Wolf M, Clay SM, Zheng S, et al. MMP12 inhibits corneal
neovascularization and inflammation through regulation of CCL2[ J].
Sci Rep, 2019, 9(1): 11579. DOI: 10.1038/s41598-019-47831-z.Wolf M, Clay SM, Zheng S, et al. MMP12 inhibits corneal
neovascularization and inflammation through regulation of CCL2[ J].
Sci Rep, 2019, 9(1): 11579. DOI: 10.1038/s41598-019-47831-z.
42、Yang W, Yang Y, Wan S, et al. Exploring the mechanism of the
miRNA-145/paxillin axis in cell metabolism during VEGF-A-induced
corneal angiogenesis[ J]. Invest Ophthalmol Vis Sci, 2021, 62(10): 25.
DOI: 10.1167/iovs.62.10.25.Yang W, Yang Y, Wan S, et al. Exploring the mechanism of the
miRNA-145/paxillin axis in cell metabolism during VEGF-A-induced
corneal angiogenesis[ J]. Invest Ophthalmol Vis Sci, 2021, 62(10): 25.
DOI: 10.1167/iovs.62.10.25.
43、Dell S, Peters S, Müther P, et al. The role of PDGF receptor
inhibitors and PI3-kinase signaling in the pathogenesis of corneal
neovascularization[ J]. Invest Ophthalmol Vis Sci, 2006, 47(5): 1928-
1937. DOI: 10.1167/iovs.05-1071.Dell S, Peters S, Müther P, et al. The role of PDGF receptor
inhibitors and PI3-kinase signaling in the pathogenesis of corneal
neovascularization[ J]. Invest Ophthalmol Vis Sci, 2006, 47(5): 1928-
1937. DOI: 10.1167/iovs.05-1071.
44、Kwon YS, Hong HS, Kim JC, et al. Inhibitory effect of rapamycin on
corneal neovascularization in vitro and in vivo[ J]. Invest Ophthalmol
Vis Sci, 2005, 46(2): 454-460. DOI: 10.1167/iovs.04-0753.Kwon YS, Hong HS, Kim JC, et al. Inhibitory effect of rapamycin on
corneal neovascularization in vitro and in vivo[ J]. Invest Ophthalmol
Vis Sci, 2005, 46(2): 454-460. DOI: 10.1167/iovs.04-0753.
45、王朋, 王雪, 吴志鸿, 等. 姜黄素对碱烧伤诱导的兔眼角膜新生血
管抑制作用的实验研究[ J]. 中华眼科医学杂志(电子版), 2019,
9(2): 111-117. DOI: 10.3877/cma.j.issn.2095-2007.2019.02.008.
Wang P, Wang X, Wu ZH, et al. Effects of curcumin on corneal
neovascularization induced by alkali burn[ J]. Chin J Ophthalmol
Med Electron Ed, 2019, 9(2): 111-117. DOI: 10.3877/cma.
j.issn.2095-2007.2019.02.008.王朋, 王雪, 吴志鸿, 等. 姜黄素对碱烧伤诱导的兔眼角膜新生血
管抑制作用的实验研究[ J]. 中华眼科医学杂志(电子版), 2019,
9(2): 111-117. DOI: 10.3877/cma.j.issn.2095-2007.2019.02.008.
Wang P, Wang X, Wu ZH, et al. Effects of curcumin on corneal
neovascularization induced by alkali burn[ J]. Chin J Ophthalmol
Med Electron Ed, 2019, 9(2): 111-117. DOI: 10.3877/cma.
j.issn.2095-2007.2019.02.008.
46、Ping X , Liang J, Shi K , et al. R apamycin relieves the cataract
caused by ablation of Gja8b through stimulating autophag y
in zebrafish[ J]. Autophag y, 2021, 17(11): 3323-3337. DOI:
10.1080/15548627.2021.1872188.Ping X , Liang J, Shi K , et al. R apamycin relieves the cataract
caused by ablation of Gja8b through stimulating autophag y
in zebrafish[ J]. Autophag y, 2021, 17(11): 3323-3337. DOI:
10.1080/15548627.2021.1872188.
47、Ma J, Ye W, Yang Y, et al. The interaction between autophagy and
the epithelial-mesenchymal transition mediated by NICD/ULK1 is
involved in the formation of diabetic cataracts[ J]. Mol Med, 2022,
28(1): 116. DOI: 10.1186/s10020-022-00540-2.Ma J, Ye W, Yang Y, et al. The interaction between autophagy and
the epithelial-mesenchymal transition mediated by NICD/ULK1 is
involved in the formation of diabetic cataracts[ J]. Mol Med, 2022,
28(1): 116. DOI: 10.1186/s10020-022-00540-2.
48、蒲雅迪. miRNA-124通过PI3K/AKT/mTOR信号通路调控晶状体上皮细胞增殖、迁移及凋亡的机制研究[D]. 青岛: 青岛大学,
2021. DOI: 10.27262/d.cnki.gqdau.2021.002573.
Pu YD. miRNA-124 regulate the proliferation, migration and apoptosis
of LECs through PI3K/AKT/mTOR signaling pathway[D].Qingdao:
Qingdao University, 2021.蒲雅迪. miRNA-124通过PI3K/AKT/mTOR信号通路调控晶状体上皮细胞增殖、迁移及凋亡的机制研究[D]. 青岛: 青岛大学,
2021. DOI: 10.27262/d.cnki.gqdau.2021.002573.
Pu YD. miRNA-124 regulate the proliferation, migration and apoptosis
of LECs through PI3K/AKT/mTOR signaling pathway[D].Qingdao:
Qingdao University, 2021.
49、席亚慧, 刘红玲, 刘明月, 等. mTOR-siRNA转染人晶状体上皮细
胞对PI3K/AKT/mTOR信号通路蛋白p70S6K及4EBP1表达的
影响[ J]. 眼科新进展, 2018, 38(9): 804-809. DOI: 10.13389/j.cnki.
rao.2018.0191.
Xi YH, Liu HL, Liu MY, et al. The effect of mTOR-siRNA transfection
of human lens epithelial cells on the expression of PI3K/AKT/mTOR
signaling protein p70S6K and 4EBP1[ J]. Recent Adv Ophthalmol,
2018, 38(9): 804-809. DOI: 10.13389/j.cnki.rao.2018.0191.席亚慧, 刘红玲, 刘明月, 等. mTOR-siRNA转染人晶状体上皮细
胞对PI3K/AKT/mTOR信号通路蛋白p70S6K及4EBP1表达的
影响[ J]. 眼科新进展, 2018, 38(9): 804-809. DOI: 10.13389/j.cnki.
rao.2018.0191.
Xi YH, Liu HL, Liu MY, et al. The effect of mTOR-siRNA transfection
of human lens epithelial cells on the expression of PI3K/AKT/mTOR
signaling protein p70S6K and 4EBP1[ J]. Recent Adv Ophthalmol,
2018, 38(9): 804-809. DOI: 10.13389/j.cnki.rao.2018.0191.
50、Chen M, Zhang C, Zhou N, et al. Metformin alleviates oxidative stress-induced senescence of human lens epithelial cells via AMPK activation
and autophagic flux restoration[ J]. J Cell Mol Med, 2021, 25(17):
8376-8389. DOI: 10.1111/jcmm.16797.Chen M, Zhang C, Zhou N, et al. Metformin alleviates oxidative stress-induced senescence of human lens epithelial cells via AMPK activation
and autophagic flux restoration[ J]. J Cell Mol Med, 2021, 25(17):
8376-8389. DOI: 10.1111/jcmm.16797.
51、Cai Y, Liu K , Wu P, et al. Association of mTORC1-dependent
circulating protein levels with cataract formation: a Mendelian
randomization study[ J]. BMC Genomics, 2022, 23(1): 719. DOI:
10.1186/s12864-022-08925-7.Cai Y, Liu K , Wu P, et al. Association of mTORC1-dependent
circulating protein levels with cataract formation: a Mendelian
randomization study[ J]. BMC Genomics, 2022, 23(1): 719. DOI:
10.1186/s12864-022-08925-7.
52、Narasimhan A , Flores RR , Robbins PD, et al. Role of cellular
senescence in type II diabetes[ J]. Endocrinology, 2021, 162(10):
bqab136. DOI: 10.1210/endocr/bqab136.Narasimhan A , Flores RR , Robbins PD, et al. Role of cellular
senescence in type II diabetes[ J]. Endocrinology, 2021, 162(10):
bqab136. DOI: 10.1210/endocr/bqab136.
53、Casciano F, Zauli E, Rimondi E, et al. The role of the mTOR pathway in
diabetic retinopathy[ J]. Front Med, 2022, 9: 973856. DOI: 10.3389/
fmed.2022.973856.Casciano F, Zauli E, Rimondi E, et al. The role of the mTOR pathway in
diabetic retinopathy[ J]. Front Med, 2022, 9: 973856. DOI: 10.3389/
fmed.2022.973856.
54、Madrakhimov SB, Yang JY, Kim JH, et al. mTOR-dependent
dysregulation of autophagy contributes to the retinal ganglion cell
loss in streptozotocin-induced diabetic retinopathy[ J]. Cell Commun
Signal, 2021, 19(1): 29. DOI: 10.1186/s12964-020-00698-4.Madrakhimov SB, Yang JY, Kim JH, et al. mTOR-dependent
dysregulation of autophagy contributes to the retinal ganglion cell
loss in streptozotocin-induced diabetic retinopathy[ J]. Cell Commun
Signal, 2021, 19(1): 29. DOI: 10.1186/s12964-020-00698-4.
55、Parmar UM, Jalgaonkar MP, Kulkarni YA, et al. Autophagy-nutrient
sensing pathways in diabetic complications[ J]. Pharmacol Res, 2022,
184: 106408. DOI: 10.1016/j.phrs.2022.106408.Parmar UM, Jalgaonkar MP, Kulkarni YA, et al. Autophagy-nutrient
sensing pathways in diabetic complications[ J]. Pharmacol Res, 2022,
184: 106408. DOI: 10.1016/j.phrs.2022.106408.
56、Zou J, Tan W, Liu K, et al. Wnt inhibitory factor 1 ameliorated
diabetic retinopathy through the AMPK/mTOR pathway-mediated
mitochondrial function[ J]. FASEB J, 2022, 36(10): e22531. DOI:
10.1096/fj.202200366RR.Zou J, Tan W, Liu K, et al. Wnt inhibitory factor 1 ameliorated
diabetic retinopathy through the AMPK/mTOR pathway-mediated
mitochondrial function[ J]. FASEB J, 2022, 36(10): e22531. DOI:
10.1096/fj.202200366RR.
57、Qin YJ, Xiao K, Zhong Z, et al. LECT2 ameliorates blood-retinal
barrier impairment secondary to diabetes via activation of the Tie2/
akt/mTOR signaling pathway[ J]. Invest Ophthalmol Vis Sci, 2022,
63(3): 7. DOI: 10.1167/iovs.63.3.7.Qin YJ, Xiao K, Zhong Z, et al. LECT2 ameliorates blood-retinal
barrier impairment secondary to diabetes via activation of the Tie2/
akt/mTOR signaling pathway[ J]. Invest Ophthalmol Vis Sci, 2022,
63(3): 7. DOI: 10.1167/iovs.63.3.7.
58、Fang Y, Shi K, Lu H, et al. Mingmu Xiaomeng Tablets restore autophagy
and alleviate diabetic retinopathy by inhibiting PI3K/akt/mTOR
signaling[ J]. Front Pharmacol, 2021, 12: 632040. DOI: 10.3389/
fphar.2021.632040.Fang Y, Shi K, Lu H, et al. Mingmu Xiaomeng Tablets restore autophagy
and alleviate diabetic retinopathy by inhibiting PI3K/akt/mTOR
signaling[ J]. Front Pharmacol, 2021, 12: 632040. DOI: 10.3389/
fphar.2021.632040.
59、Li R, Li H, Zhang Q. Procyanidin protects human retinal pigment
epithelial cells from high glucose by inhibiting autophagy[ J]. Environ
Toxicol, 2022, 37(2): 201-211. DOI: 10.1002/tox.23389.Li R, Li H, Zhang Q. Procyanidin protects human retinal pigment
epithelial cells from high glucose by inhibiting autophagy[ J]. Environ
Toxicol, 2022, 37(2): 201-211. DOI: 10.1002/tox.23389.
60、Zhang XX, Ji YL, Zhu LP, et al. Arjunolic acid from Cyclocarya
paliurus ameliorates diabetic retinopathy through AMPK/mTOR/
HO-1 regulated autophagy pathway[ J]. J Ethnopharmacol, 2022, 284:
114772. DOI: 10.1016/j.jep.2021.114772.Zhang XX, Ji YL, Zhu LP, et al. Arjunolic acid from Cyclocarya
paliurus ameliorates diabetic retinopathy through AMPK/mTOR/
HO-1 regulated autophagy pathway[ J]. J Ethnopharmacol, 2022, 284:
114772. DOI: 10.1016/j.jep.2021.114772.
61、Wang N, Zhang C, Xu Y, et al. Berberine improves insulin-induced
diabetic retinopathy through exclusively suppressing Akt/mTOR-mediated HIF-1α/VEGF activation in retina endothelial cells[ J]. Int J
Biol Sci, 2021, 17(15): 4316-4326. DOI: 10.7150/ijbs.62868.Wang N, Zhang C, Xu Y, et al. Berberine improves insulin-induced
diabetic retinopathy through exclusively suppressing Akt/mTOR-mediated HIF-1α/VEGF activation in retina endothelial cells[ J]. Int J
Biol Sci, 2021, 17(15): 4316-4326. DOI: 10.7150/ijbs.62868.
62、Liu XY, Peng J, He F, et al. Shabyar ameliorates high glucose induced
retinal pigment epithelium injury through suppressing aldose reductase
and AMPK/mTOR/ULK1 autophagy pathway[ J]. Front Pharmacol,
2022, 13: 852945. DOI: 10.3389/fphar.2022.852945.Liu XY, Peng J, He F, et al. Shabyar ameliorates high glucose induced
retinal pigment epithelium injury through suppressing aldose reductase
and AMPK/mTOR/ULK1 autophagy pathway[ J]. Front Pharmacol,
2022, 13: 852945. DOI: 10.3389/fphar.2022.852945.
63、Karg MM, John L, Refaian N, et al. Midkine promotes metastasis and
therapeutic resistance via mTOR/RPS6 in uveal melanoma[ J]. Mol
Cancer Res, 2022, 20(8): 1320-1336. DOI: 10.1158/1541-7786.MCR-
20-0692.Karg MM, John L, Refaian N, et al. Midkine promotes metastasis and
therapeutic resistance via mTOR/RPS6 in uveal melanoma[ J]. Mol
Cancer Res, 2022, 20(8): 1320-1336. DOI: 10.1158/1541-7786.MCR-
20-0692.
64、Ding Y, Yu J, Chen X, et al. Dose-dependent carbon-dot-induced ROS
promote uveal melanoma cell tumorigenicity via activation of mTOR
signaling and glutamine metabolism[ J]. Adv Sci, 2021, 8(8): 2002404.
DOI: 10.1002/advs.202002404.Ding Y, Yu J, Chen X, et al. Dose-dependent carbon-dot-induced ROS
promote uveal melanoma cell tumorigenicity via activation of mTOR
signaling and glutamine metabolism[ J]. Adv Sci, 2021, 8(8): 2002404.
DOI: 10.1002/advs.202002404.
65、魏丽, 连红梅, 刘鹏, 等. MiR-127-3p靶向MAPK4对葡萄膜黑色
素瘤细胞增殖、凋亡、迁移和侵袭的影响[ J]. 中山大学学报
(医学版), 2020, 41(1): 76-85. DOI: 10.13471/j.cnki.j.sun.yat-sen.
univ(med.sci).2020.0012.
Wei L, Lian HM, Liu P, et al. Effect of miR-127-3p on proliferation,
apoptosis, migration and invasion of uveal melanoma cells via targeting
MAPK4[ J]. J Sun Yat Sen Univ Med Sci, 2020, 41(1): 76-85. DOI:
10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2020.0012.魏丽, 连红梅, 刘鹏, 等. MiR-127-3p靶向MAPK4对葡萄膜黑色
素瘤细胞增殖、凋亡、迁移和侵袭的影响[ J]. 中山大学学报
(医学版), 2020, 41(1): 76-85. DOI: 10.13471/j.cnki.j.sun.yat-sen.
univ(med.sci).2020.0012.
Wei L, Lian HM, Liu P, et al. Effect of miR-127-3p on proliferation,
apoptosis, migration and invasion of uveal melanoma cells via targeting
MAPK4[ J]. J Sun Yat Sen Univ Med Sci, 2020, 41(1): 76-85. DOI:
10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2020.0012.
66、李珂, 项奕. miRNA-19对葡萄膜黑色素瘤细胞增殖、凋亡、
迁移和侵袭的影响及其机制研究[ J]. 眼科新进展, 2021, 41(5):
413-416. DOI: 10.13389/j.cnki.rao.2021.0086.
Li K, Xiang Y. Effects of miRNA-19 on proliferation, apoptosis,
migration and invasion of uveal melanoma cells and its mechanisms[ J].
Recent Adv Ophthalmol, 2021, 41(5): 413-416. DOI: 10.13389/j.cnki.
rao.2021.0086.李珂, 项奕. miRNA-19对葡萄膜黑色素瘤细胞增殖、凋亡、
迁移和侵袭的影响及其机制研究[ J]. 眼科新进展, 2021, 41(5):
413-416. DOI: 10.13389/j.cnki.rao.2021.0086.
Li K, Xiang Y. Effects of miRNA-19 on proliferation, apoptosis,
migration and invasion of uveal melanoma cells and its mechanisms[ J].
Recent Adv Ophthalmol, 2021, 41(5): 413-416. DOI: 10.13389/j.cnki.
rao.2021.0086.
67、Farhan M, Silva M, Xing X, et al. Artemisinin inhibits the migration and
invasion in uveal melanoma via inhibition of the PI3K/AKT/mTOR
signaling pathway[ J]. Oxid Med Cell Longev, 2021, 2021: 9911537.
DOI: 10.1155/2021/9911537.Farhan M, Silva M, Xing X, et al. Artemisinin inhibits the migration and
invasion in uveal melanoma via inhibition of the PI3K/AKT/mTOR
signaling pathway[ J]. Oxid Med Cell Longev, 2021, 2021: 9911537.
DOI: 10.1155/2021/9911537.
68、吴沙. 辣椒素对脉络膜黑色素瘤C918和OCM-1细胞株增殖、
迁移和自噬的影响[D]. 南昌: 南昌大学, 2023. DOI: 10.27232/
d.cnki.gnchu.2023.000801.
Wu S. Effects of capsaicin on Proliferation、Migration and autophagy
of choroidal melanoma cell lines C918 and OCM-1[D].Nanchang:
Nanchang University, 2023.吴沙. 辣椒素对脉络膜黑色素瘤C918和OCM-1细胞株增殖、
迁移和自噬的影响[D]. 南昌: 南昌大学, 2023. DOI: 10.27232/
d.cnki.gnchu.2023.000801.
Wu S. Effects of capsaicin on Proliferation、Migration and autophagy
of choroidal melanoma cell lines C918 and OCM-1[D].Nanchang:
Nanchang University, 2023.
69、廖瑜俊. MiR-140-5p和PRC1对视网膜母细胞瘤的作用和
机制研究[D]. 南昌: 南昌大学, 2020. DOI: 10.27232/d.cnki.
gnchu.2020.003673.
Liao YJ. The effect and mechanism of miR-140-5p and PRC1 on
retinoblastoma[D].Nanchang: Nanchang University, 2020. DOI: 10.27232/d.cnki.
gnchu.2020.003673.廖瑜俊. MiR-140-5p和PRC1对视网膜母细胞瘤的作用和
机制研究[D]. 南昌: 南昌大学, 2020. DOI: 10.27232/d.cnki.
gnchu.2020.003673.
Liao YJ. The effect and mechanism of miR-140-5p and PRC1 on
retinoblastoma[D].Nanchang: Nanchang University, 2020. DOI: 10.27232/d.cnki.
gnchu.2020.003673.
70、谢丹璇, 周龑, 牟成金, 等. 木犀草素调控视网膜母细胞瘤侵袭
性和干样特性的机制研究[ J]. 中国免疫学杂志, 2022, 38(23):
2865-2869. DOI: 10.3969/j.issn.1000-484X.2022.23.009.
Xie DX , Zhou Y, (Mou/Mu) CJ, et al. Study on regulation
mechanism of luteolin for invasion and stem cell-like characteristics of
retinoblastoma[ J]. Chin J Immunol, 2022, 38(23): 2865-2869. DOI:
10.3969/j.issn.1000-484X.2022.23.009.谢丹璇, 周龑, 牟成金, 等. 木犀草素调控视网膜母细胞瘤侵袭
性和干样特性的机制研究[ J]. 中国免疫学杂志, 2022, 38(23):
2865-2869. DOI: 10.3969/j.issn.1000-484X.2022.23.009.
Xie DX , Zhou Y, (Mou/Mu) CJ, et al. Study on regulation
mechanism of luteolin for invasion and stem cell-like characteristics of
retinoblastoma[ J]. Chin J Immunol, 2022, 38(23): 2865-2869. DOI:
10.3969/j.issn.1000-484X.2022.23.009.
71、杨娟, 唐燕君, 李文东, 等. 蛇床子素抑制PI3 K/AKT/mTOR的活
化诱导视网膜母细胞瘤Y79细胞凋亡和抑制裸鼠成瘤的研究
[ J]. 解放军医药杂志, 2020, 32(8): 15-19. DOI: 10.3969/j.issn.2095-
140X.2020.08.004.
Yang J, Tang YJ, Li WD, et al. Effect of osthole in inducing apoptosis
of retinoblastoma Y79 cells and inhibiting tumor formation in nude
mice by inhibiting activation of PI3K/AKT/mTOR[ J]. Med Pharm
J Chin People's Liberation Army, 2020, 32(8): 15-19. DOI: 10.3969/
j.issn.2095-140X.2020.08.004.杨娟, 唐燕君, 李文东, 等. 蛇床子素抑制PI3 K/AKT/mTOR的活
化诱导视网膜母细胞瘤Y79细胞凋亡和抑制裸鼠成瘤的研究
[ J]. 解放军医药杂志, 2020, 32(8): 15-19. DOI: 10.3969/j.issn.2095-
140X.2020.08.004.
Yang J, Tang YJ, Li WD, et al. Effect of osthole in inducing apoptosis
of retinoblastoma Y79 cells and inhibiting tumor formation in nude
mice by inhibiting activation of PI3K/AKT/mTOR[ J]. Med Pharm
J Chin People's Liberation Army, 2020, 32(8): 15-19. DOI: 10.3969/
j.issn.2095-140X.2020.08.004.
72、Day TA, Shirai K, O’Brien PE, et al. Inhibition of mTOR signaling
and clinical activity of rapamycin in head and neck cancer in a window
of opportunity trial[ J]. Clin Cancer Res, 2019, 25(4): 1156-1164.
DOI: 10.1158/1078-0432.CCR-18-2024.Day TA, Shirai K, O’Brien PE, et al. Inhibition of mTOR signaling
and clinical activity of rapamycin in head and neck cancer in a window
of opportunity trial[ J]. Clin Cancer Res, 2019, 25(4): 1156-1164.
DOI: 10.1158/1078-0432.CCR-18-2024.
73、Movva S, Matloob S, Handorf EA, et al. SAR-096: phase II clinical
trial of ribociclib in combination with everolimus in advanced
dedifferentiated liposarcoma (DDL) and leiomyosarcoma (LMS)[ J].
Clin Cancer Res, 2024, 30(2): 315-322. DOI: 10.1158/1078-0432.
CCR-23-2469.Movva S, Matloob S, Handorf EA, et al. SAR-096: phase II clinical
trial of ribociclib in combination with everolimus in advanced
dedifferentiated liposarcoma (DDL) and leiomyosarcoma (LMS)[ J].
Clin Cancer Res, 2024, 30(2): 315-322. DOI: 10.1158/1078-0432.
CCR-23-2469.
74、Ness DB, Pooler DB, Ades S, et al. A phase II study of alternating
sunitinib and temsirolimus therapy in patients with metastatic renal
cell carcinoma[ J]. Cancer Med, 2023, 12(12): 13100-13110. DOI:
10.1002/cam4.5990.Ness DB, Pooler DB, Ades S, et al. A phase II study of alternating
sunitinib and temsirolimus therapy in patients with metastatic renal
cell carcinoma[ J]. Cancer Med, 2023, 12(12): 13100-13110. DOI:
10.1002/cam4.5990.
75、Subbiah V, Coleman N, Piha-Paul SA , et al. Phase I study of
mTORC1/2 inhibitor sapanisertib (CB-228/TAK-228) in combination
with metformin in patients with mTOR/AKT/PI3K pathway
alterations and advanced solid malignancies[ J]. Cancer Res Commun,
2024, 4(2): 378-387. DOI: 10.1158/2767-9764.CRC-22-0260.Subbiah V, Coleman N, Piha-Paul SA , et al. Phase I study of
mTORC1/2 inhibitor sapanisertib (CB-228/TAK-228) in combination
with metformin in patients with mTOR/AKT/PI3K pathway
alterations and advanced solid malignancies[ J]. Cancer Res Commun,
2024, 4(2): 378-387. DOI: 10.1158/2767-9764.CRC-22-0260.
76、Dalal M, Jacobs-El N, Nicholson B, et al. Subconjunctival Palomid 529
in the treatment of neovascular age-related macular degeneration[ J].
Graefes Arch Clin Exp Ophthalmol, 2013, 251(12): 2705-2709. DOI:
10.1007/s00417-013-2375-7.Dalal M, Jacobs-El N, Nicholson B, et al. Subconjunctival Palomid 529
in the treatment of neovascular age-related macular degeneration[ J].
Graefes Arch Clin Exp Ophthalmol, 2013, 251(12): 2705-2709. DOI:
10.1007/s00417-013-2375-7.