1、Bourne RRA, Flaxman SR, Braithwaite T, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis[ J]. Lancet Glob Health, 2017, 5(9): e888-e897.Bourne RRA, Flaxman SR, Braithwaite T, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis[ J]. Lancet Glob Health, 2017, 5(9): e888-e897.
2、王宁利. 我国眼健康事业“基数”摸清[ J]. 中国卫生, 2020(7): 94-97.
Wang NL. Find out the “base” of eye health in China[ J]. China Health, 2020(7): 94-97.
3、Bourne RRA, Flaxman SR, Braithwaite T, Cicinelli MV, Das A, Jonas JB, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and metaanalysis. The Lancet Global Health. 2017;5(9):e888–e97.Bourne RRA, Flaxman SR, Braithwaite T, Cicinelli MV, Das A, Jonas JB, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and metaanalysis. The Lancet Global Health. 2017;5(9):e888–e97.
4、%C5%9Eahl%C4%B1%20E%2C%20%C4%B0dil%20A.%20A%20common%20approach%20to%20low%20vision%3A%20examination%20and%20rehabilitation%20of%20the%20patient%20with%20low%20vision%5B%20J%5D.%20Turk%20J%20Ophthalmol%2C%202019%2C%2049(2)%3A%2089-98.%C5%9Eahl%C4%B1%20E%2C%20%C4%B0dil%20A.%20A%20common%20approach%20to%20low%20vision%3A%20examination%20and%20rehabilitation%20of%20the%20patient%20with%20low%20vision%5B%20J%5D.%20Turk%20J%20Ophthalmol%2C%202019%2C%2049(2)%3A%2089-98.
5、Owsley C, McGwin G Jr, Elgin J, et al. Visually impaired drivers who use bioptic telescopes: self-assessed driving skills and agreement with on-road driving evaluation[ J]. Invest Ophthalmol Vis Sci, 2014, 55(1): 330-336.Owsley C, McGwin G Jr, Elgin J, et al. Visually impaired drivers who use bioptic telescopes: self-assessed driving skills and agreement with on-road driving evaluation[ J]. Invest Ophthalmol Vis Sci, 2014, 55(1): 330-336.
6、Wilkinson ME, Shahid KS. Low vision rehabilitation: an update[ J]. Saudi J Ophthalmol, 2018, 32(2): 134-138.Wilkinson ME, Shahid KS. Low vision rehabilitation: an update[ J]. Saudi J Ophthalmol, 2018, 32(2): 134-138.
7、Chun R, Cucuras M, Jay WM. Current perspectives of bioptic driving in low vision[ J]. Neuro-Ophthalmology, 2016, 40(2): 53-58.Chun R, Cucuras M, Jay WM. Current perspectives of bioptic driving in low vision[ J]. Neuro-Ophthalmology, 2016, 40(2): 53-58.
8、Bowers AR, Bronstad PM, Spano LP, et al. Evaluation of a paradigm to investigate detection of road hazards when using a bioptic telescope[ J]. Optom Vis Sci, 2018, 95(9): 785-794.Bowers AR, Bronstad PM, Spano LP, et al. Evaluation of a paradigm to investigate detection of road hazards when using a bioptic telescope[ J]. Optom Vis Sci, 2018, 95(9): 785-794.
9、Tabernero J, Qureshi MA, Robbie SJ, et al. An aspheric intraocular telescope for age-related macular degeneration patients[ J]. Biomed Opt Express, 2015, 6(3): 1010.Tabernero J, Qureshi MA, Robbie SJ, et al. An aspheric intraocular telescope for age-related macular degeneration patients[ J]. Biomed Opt Express, 2015, 6(3): 1010.
10、Vincent SJ. The use of contact lens telescopic systems in low vision rehabilitation[ J]. Cont Lens Anterior Eye, 2017, 40(3): 131-142.Vincent SJ. The use of contact lens telescopic systems in low vision rehabilitation[ J]. Cont Lens Anterior Eye, 2017, 40(3): 131-142.
11、Arianpour A, Schuster GM, Tremblay EJ, et al. Wearable telescopic contact lens[ J]. Appl Opt, 2015, 54(24): 7195-7204.Arianpour A, Schuster GM, Tremblay EJ, et al. Wearable telescopic contact lens[ J]. Appl Opt, 2015, 54(24): 7195-7204.
12、Schuster GM, Arianpour A, Cookson S, et al. Wink-controlled polarization-switched telescopic contact lenses[ J]. Appl Opt, 2015, 54(32): 9597-9605.Schuster GM, Arianpour A, Cookson S, et al. Wink-controlled polarization-switched telescopic contact lenses[ J]. Appl Opt, 2015, 54(32): 9597-9605.
13、Singer MA, Amir N, Herro A, et al. Improving quality of life in patients with end-stage age-related macular degeneration: focus on miniature ocular implants[ J]. Clin Ophthalmol, 2012, 6: 33-39.Singer MA, Amir N, Herro A, et al. Improving quality of life in patients with end-stage age-related macular degeneration: focus on miniature ocular implants[ J]. Clin Ophthalmol, 2012, 6: 33-39.
14、Dunbar HMP, Dhawahir-Scala FE. A discussion of commercially available intra-ocular telescopic implants for patients with age-related macular degeneration[ J]. Ophthalmol er, 2018, 7(1): 33-48.Dunbar HMP, Dhawahir-Scala FE. A discussion of commercially available intra-ocular telescopic implants for patients with age-related macular degeneration[ J]. Ophthalmol er, 2018, 7(1): 33-48.
15、Boyer D, Freund KB, Regillo C, et al. Long-term (60-month) results
for the implantable miniature telescope: efficacy and safety outcomes
stratified by age in patients with end-stage age-related macular
degeneration[ J]. Clin Ophthalmol, 2015, 9: 1099-1107.Boyer D, Freund KB, Regillo C, et al. Long-term (60-month) results
for the implantable miniature telescope: efficacy and safety outcomes
stratified by age in patients with end-stage age-related macular
degeneration[ J]. Clin Ophthalmol, 2015, 9: 1099-1107.
16、Beiderman Y, Belkin M, Rotenstreich Y, et al. Experimental
quantification of the tactile spatial responsivity of human cornea[ J]. J
Med Imaging, 2015, 2(1): 016002.Beiderman Y, Belkin M, Rotenstreich Y, et al. Experimental
quantification of the tactile spatial responsivity of human cornea[ J]. J
Med Imaging, 2015, 2(1): 016002.
17、Taylor JJ, Bambrick R , Brand A, et al. Effectiveness of portable
electronic and optical magnifiers for near vision activities in low vision:
a randomised crossover trial[ J]. Ophthalmic Physiol Opt, 2017, 37(4):
370-384.Taylor JJ, Bambrick R , Brand A, et al. Effectiveness of portable
electronic and optical magnifiers for near vision activities in low vision:
a randomised crossover trial[ J]. Ophthalmic Physiol Opt, 2017, 37(4):
370-384.
18、van Rheede JJ, Wilson IR , Qian RI, et al. Improving mobility
performance in low vision with a distance-based representation of the
visual scene[ J]. Invest Ophthalmol Vis Sci, 2015, 56(8): 4802-4809.van Rheede JJ, Wilson IR , Qian RI, et al. Improving mobility
performance in low vision with a distance-based representation of the
visual scene[ J]. Invest Ophthalmol Vis Sci, 2015, 56(8): 4802-4809.
19、Deemer%20AD%2C%20Bradley%20CK%2C%20Ross%20NC%2C%20et%20al.%20Low%20vision%20enhancement%20%0Awith%20head-mounted%20video%20display%20systems%3A%20are%20we%20there%20yet%3F%5B%20J%5D.%20Optom%20%0AVis%20Sci%2C%202018%2C%2095(9)%3A%20694-703.Deemer%20AD%2C%20Bradley%20CK%2C%20Ross%20NC%2C%20et%20al.%20Low%20vision%20enhancement%20%0Awith%20head-mounted%20video%20display%20systems%3A%20are%20we%20there%20yet%3F%5B%20J%5D.%20Optom%20%0AVis%20Sci%2C%202018%2C%2095(9)%3A%20694-703.
20、Brown JC, Goldstein JE, Chan TL, et al. Characterizing functional
complaints in patients seeking outpatient low-vision services in the
United States[ J]. Ophthalmology, 2014, 121(8): 1655-1662.e1.Brown JC, Goldstein JE, Chan TL, et al. Characterizing functional
complaints in patients seeking outpatient low-vision services in the
United States[ J]. Ophthalmology, 2014, 121(8): 1655-1662.e1.
21、Apfelbaum H, Peli E. Tunnel vision prismatic field expansion:
challenges and requirements[ J]. Transl Vis Sci Technol, 2015, 4(6): 8.Apfelbaum H, Peli E. Tunnel vision prismatic field expansion:
challenges and requirements[ J]. Transl Vis Sci Technol, 2015, 4(6): 8.
22、Ehrlich JR , Ojeda LV, Wicker D, et al. Head-mounted display
technology for low-vision rehabilitation and vision enhancement[ J].
Am J Ophthalmol, 2017, 176: 26-32.Ehrlich JR , Ojeda LV, Wicker D, et al. Head-mounted display
technology for low-vision rehabilitation and vision enhancement[ J].
Am J Ophthalmol, 2017, 176: 26-32.
23、Shah P, Schwartz SG, Gartner S, et al. Low vision ser vices: a
practical guide for the clinician[ J]. Ther Adv Ophthalmol, 2018, 10:
2515841418776264.Shah P, Schwartz SG, Gartner S, et al. Low vision ser vices: a
practical guide for the clinician[ J]. Ther Adv Ophthalmol, 2018, 10:
2515841418776264.
24、Morrice E, Johnson AP, Marinier JA, et al. Assessment of the Apple
iPad as a low-vision reading aid[ J]. Eye, 2017, 31(6): 865-871.Morrice E, Johnson AP, Marinier JA, et al. Assessment of the Apple
iPad as a low-vision reading aid[ J]. Eye, 2017, 31(6): 865-871.
25、Cucuras M, Chun R, Lee P, et al. GPS usage in a population of low-vision drivers[ J]. Semin Ophthalmol, 2017, 32(4): 438-442.Cucuras M, Chun R, Lee P, et al. GPS usage in a population of low-vision drivers[ J]. Semin Ophthalmol, 2017, 32(4): 438-442.
26、Wilkinson%20ME%2C%20McGehee%20DV.%20Auditory%20global%20positioning%20system%20%0Aand%20advanced%20driver%20assistance%20systems%3A%20a%20safer%20alternative%20to%20bioptic%20%0Atelescopes%20for%20drivers%20who%20are%20visually%20impaired%3F%5B%20J%5D.%20Optom%20Vis%20Sci%2C%20%0A2019%2C%2096(2)%3A%20130-132.Wilkinson%20ME%2C%20McGehee%20DV.%20Auditory%20global%20positioning%20system%20%0Aand%20advanced%20driver%20assistance%20systems%3A%20a%20safer%20alternative%20to%20bioptic%20%0Atelescopes%20for%20drivers%20who%20are%20visually%20impaired%3F%5B%20J%5D.%20Optom%20Vis%20Sci%2C%20%0A2019%2C%2096(2)%3A%20130-132.
27、Walter P. Visual prostheses[ J]. Ophthalmologe, 2016, 113(2):175-188.Walter P. Visual prostheses[ J]. Ophthalmologe, 2016, 113(2):175-188.
28、Shull PB, Damian DD. Haptic wearables as sensory replacement,
sensory augmentation and trainer - a review[ J]. J Neuroeng Rehabil,
2015, 12: 59.Shull PB, Damian DD. Haptic wearables as sensory replacement,
sensory augmentation and trainer - a review[ J]. J Neuroeng Rehabil,
2015, 12: 59.
29、Bennett C, Gale SD, Garrett ME, et al. Higher-order thalamic circuits
channel parallel streams of visual information in mice[ J]. Neuron,
2019, 102(2): 477-492.e5.Bennett C, Gale SD, Garrett ME, et al. Higher-order thalamic circuits
channel parallel streams of visual information in mice[ J]. Neuron,
2019, 102(2): 477-492.e5.
30、Jóhannesson óI, Balan O, Unnthorsson R, et al. The sound of vision
project: on the feasibility of an audio-haptic representation of the
environment, for the visually impaired[ J]. Brain Sci, 2016, 6(3): 20.Jóhannesson óI, Balan O, Unnthorsson R, et al. The sound of vision
project: on the feasibility of an audio-haptic representation of the
environment, for the visually impaired[ J]. Brain Sci, 2016, 6(3): 20.
31、钱江源. 视网膜假体的研究现况[ J]. 国际眼科纵览, 2019, 43(1):
25-29.
Qian JY. Research situation of retinal prostheses[ J]. Int Rev
Ophthalmol, 2019, 43(1): 25-29.钱江源. 视网膜假体的研究现况[ J]. 国际眼科纵览, 2019, 43(1):
25-29.
Qian JY. Research situation of retinal prostheses[ J]. Int Rev
Ophthalmol, 2019, 43(1): 25-29.
32、Yoon CK, Yu HG. Ganglion cell-inner plexiform layer and retinal nerve
fibre layer changes within the macula in retinitis pigmentosa: a spectral
domain optical coherence tomography study[ J]. Acta Ophthalmol,
2018, 96(2): e180-e188.Yoon CK, Yu HG. Ganglion cell-inner plexiform layer and retinal nerve
fibre layer changes within the macula in retinitis pigmentosa: a spectral
domain optical coherence tomography study[ J]. Acta Ophthalmol,
2018, 96(2): e180-e188.
33、Rachitskaya AV, Yuan A. Argus II retinal prosthesis system: an
update[ J]. Ophthalmic Genet, 2016, 37(3): 260-266.Rachitskaya AV, Yuan A. Argus II retinal prosthesis system: an
update[ J]. Ophthalmic Genet, 2016, 37(3): 260-266.
34、Markowitz M, Rankin M, Mongy M, et al. Rehabilitation of lost
functional vision with the Argus II retinal prosthesis[ J]. Can J
Ophthalmol, 2018, 53(1): 14-22.Markowitz M, Rankin M, Mongy M, et al. Rehabilitation of lost
functional vision with the Argus II retinal prosthesis[ J]. Can J
Ophthalmol, 2018, 53(1): 14-22.
35、Walter P. Future Developments in Retinal Prostheses[ J]. Klin Monbl
Augenheilkd, 2016, 233(11):1238-1243.Walter P. Future Developments in Retinal Prostheses[ J]. Klin Monbl
Augenheilkd, 2016, 233(11):1238-1243.
36、Luo%20YHL%2C%20Zhong%20JJ%2C%20da%20Cruz%20L.%20The%20use%20of%20Argus%C2%AE%20II%20retinal%20prosthesis%20%0Aby%20blind%20subjects%20to%20achieve%20localisation%20and%20prehension%20of%20objects%20in%20%0A3-dimensional%20space%5B%20J%5D.%20Graefe's%20Arch%20Clin%20Exp%20Ophthalmol%2C%202015%2C%20%0A253(11)%3A%201907-1914.Luo%20YHL%2C%20Zhong%20JJ%2C%20da%20Cruz%20L.%20The%20use%20of%20Argus%C2%AE%20II%20retinal%20prosthesis%20%0Aby%20blind%20subjects%20to%20achieve%20localisation%20and%20prehension%20of%20objects%20in%20%0A3-dimensional%20space%5B%20J%5D.%20Graefe's%20Arch%20Clin%20Exp%20Ophthalmol%2C%202015%2C%20%0A253(11)%3A%201907-1914.
37、Park B, Yang H, Ha TH, et al. Artificial rod and cone photoreceptors
with human-like spectral sensitivities[ J]. Adv Mater, 2018, 30(27):
e1706764.Park B, Yang H, Ha TH, et al. Artificial rod and cone photoreceptors
with human-like spectral sensitivities[ J]. Adv Mater, 2018, 30(27):
e1706764.
38、Tsai WL, Chen CY, Wen YT, et al. Band tunable microcavity perovskite
artificial human photoreceptors[ J]. Adv Mater, 2019, 31(24):
e1900231.Tsai WL, Chen CY, Wen YT, et al. Band tunable microcavity perovskite
artificial human photoreceptors[ J]. Adv Mater, 2019, 31(24):
e1900231.
39、%C3%96zmert%20E%2C%20Arslan%20U.%20Retinal%20prostheses%20and%20artificial%20vision%5B%20J%5D.%20Turk%20J%20%0AOphthalmol%2C%202019%2C%2049(4)%3A%20213-219.%C3%96zmert%20E%2C%20Arslan%20U.%20Retinal%20prostheses%20and%20artificial%20vision%5B%20J%5D.%20Turk%20J%20%0AOphthalmol%2C%202019%2C%2049(4)%3A%20213-219.
40、Caraiman S, Zvoristeanu O, Burlacu A, et al. Stereo vision based
sensory substitution for the visually impaired[ J]. Sensors, 2019,
19(12): 2771.Caraiman S, Zvoristeanu O, Burlacu A, et al. Stereo vision based
sensory substitution for the visually impaired[ J]. Sensors, 2019,
19(12): 2771.
41、Peterson G, Zanoni DK, Ardigo M, et al. Feasibility of a video-mosaicking approach to extend the field-of-view for reflectance confocal
microscopy in the oral cavity in vivo[ J]. Lasers Surg Med, 2019, 51(5):
439-451.Peterson G, Zanoni DK, Ardigo M, et al. Feasibility of a video-mosaicking approach to extend the field-of-view for reflectance confocal
microscopy in the oral cavity in vivo[ J]. Lasers Surg Med, 2019, 51(5):
439-451.
42、Deneux T, Harrell ER, Kempf A, et al. Context-dependent signaling of
coincident auditory and visual events in primary visual cortex[ J]. eLife,
2019, 8: e44006.Deneux T, Harrell ER, Kempf A, et al. Context-dependent signaling of
coincident auditory and visual events in primary visual cortex[ J]. eLife,
2019, 8: e44006.
43、Meijer GT, Montijn JS, Pennartz CMA, et al. Audiovisual modulation
in mouse primary visual cortex depends on cross-modal stimulus
configuration and congruency[ J]. J Neurosci, 2017, 37(36): 8783-
8796.Meijer GT, Montijn JS, Pennartz CMA, et al. Audiovisual modulation
in mouse primary visual cortex depends on cross-modal stimulus
configuration and congruency[ J]. J Neurosci, 2017, 37(36): 8783-
8796.
44、Kristjánsson á, Moldoveanu A, Jóhannesson óI, et al. Designing
sensory-substitution devices: principles, pitfalls and potential1[ J].
Restor Neurol Neurosci, 2016, 34(5): 769-787.Kristjánsson á, Moldoveanu A, Jóhannesson óI, et al. Designing
sensory-substitution devices: principles, pitfalls and potential1[ J].
Restor Neurol Neurosci, 2016, 34(5): 769-787.
45、Meyniel C, Bodaghi B, Robert PY. Revisiting vision rehabilitation[ J].
Front Syst Neurosci, 2017, 11: 82.Meyniel C, Bodaghi B, Robert PY. Revisiting vision rehabilitation[ J].
Front Syst Neurosci, 2017, 11: 82.
46、Elliott LR, van Erp JBF, Redden ES, et al. Field-based validation of a
tactile navigation device[ J]. IEEE Trans Haptics, 2010, 3(2): 78-87.Elliott LR, van Erp JBF, Redden ES, et al. Field-based validation of a
tactile navigation device[ J]. IEEE Trans Haptics, 2010, 3(2): 78-87.
47、Ramadhan A. Wearable smart system for visually impaired people[ J].
Sensors, 2018, 18(3): 843.Ramadhan A. Wearable smart system for visually impaired people[ J].
Sensors, 2018, 18(3): 843.
48、Velazquez R, Bazan O. Preliminary evaluation of podotactile feedback
in sighted and blind users[ J]. Conf Proc IEEE Eng Med Biol Soc,
2010,2010:2103-2106.Velazquez R, Bazan O. Preliminary evaluation of podotactile feedback
in sighted and blind users[ J]. Conf Proc IEEE Eng Med Biol Soc,
2010,2010:2103-2106.
49、Caraiman S, Zvoristeanu O, Burlacu A, et al. Stereo vision based
sensory substitution for the visually impaired[ J]. Sensors, 2019,
19(12): 2771.Caraiman S, Zvoristeanu O, Burlacu A, et al. Stereo vision based
sensory substitution for the visually impaired[ J]. Sensors, 2019,
19(12): 2771.
50、Hoffmann R, Spagnol S, Kristjánsson á, et al. Evaluation of an audio-haptic sensory substitution device for enhancing spatial awareness for
the visually impaired[ J]. Optom Vis Sci, 2018, 95(9): 757-765.Hoffmann R, Spagnol S, Kristjánsson á, et al. Evaluation of an audio-haptic sensory substitution device for enhancing spatial awareness for
the visually impaired[ J]. Optom Vis Sci, 2018, 95(9): 757-765.
51、Halko MA , Eldaief MC, Pascual-Leone A . Noninvasive brain
stimulation in the study of the human visual system[ J]. J Glaucoma,
2013, 22 Suppl 5(0 5): S39-S41.Halko MA , Eldaief MC, Pascual-Leone A . Noninvasive brain
stimulation in the study of the human visual system[ J]. J Glaucoma,
2013, 22 Suppl 5(0 5): S39-S41.
52、Granata G, Iodice F, Falsini B, et al. The role of primary visual
cortex after transorbital alternating current stimulation in low vision
patients[ J]. Clin Neurophysiol, 2020, 131(9): 2327-2328.Granata G, Iodice F, Falsini B, et al. The role of primary visual
cortex after transorbital alternating current stimulation in low vision
patients[ J]. Clin Neurophysiol, 2020, 131(9): 2327-2328.
53、Matteo BM, Viganò B, Cerri CG, et al. Visual field restorative
rehabilitation after brain injury[ J]. J Vis, 2016, 16(9): 11.Matteo BM, Viganò B, Cerri CG, et al. Visual field restorative
rehabilitation after brain injury[ J]. J Vis, 2016, 16(9): 11.
54、Sabel BA, Henrich-Noack P, Fedorov A, et al. Vision restoration after
brain and retina damage: the “residual vision activation theory”[ J].
Prog Brain Res, 2011, 192: 199-262.Sabel BA, Henrich-Noack P, Fedorov A, et al. Vision restoration after
brain and retina damage: the “residual vision activation theory”[ J].
Prog Brain Res, 2011, 192: 199-262.
55、Scuderi G, Verboschi F, Domanico D, et al. Fixation improvement
through biofeedback rehabilitation in stargardt disease[ J]. Case Rep
Med, 2016, 2016: 4264829.Scuderi G, Verboschi F, Domanico D, et al. Fixation improvement
through biofeedback rehabilitation in stargardt disease[ J]. Case Rep
Med, 2016, 2016: 4264829.
56、Ramírez Estudillo JA, León Higuera MI, Rojas Juárez S, et al. Visual
rehabilitation via microperimetry in patients with geographic atrophy:
a pilot study[ J]. Int J Retina Vitreous, 2017, 3: 21.Ramírez Estudillo JA, León Higuera MI, Rojas Juárez S, et al. Visual
rehabilitation via microperimetry in patients with geographic atrophy:
a pilot study[ J]. Int J Retina Vitreous, 2017, 3: 21.
57、Barboni MTS, Récsán Z, Szepessy Z, et al. Preliminary findings on the
optimization of visual performance in patients with age-related macular
degeneration using biofeedback training[ J]. Appl Psychophysiol
Biofeedback, 2019, 44(1): 61-70.Barboni MTS, Récsán Z, Szepessy Z, et al. Preliminary findings on the
optimization of visual performance in patients with age-related macular
degeneration using biofeedback training[ J]. Appl Psychophysiol
Biofeedback, 2019, 44(1): 61-70.