1、Lawrence DR, Palacios-González C, Harris J. Artificial Intelligence[J]. Camb Q Healthc Ethics, 2016, 25(2): 250-261.Lawrence DR, Palacios-González C, Harris J. Artificial Intelligence[J]. Camb Q Healthc Ethics, 2016, 25(2): 250-261.
2、Hogarty DT, Mackey DA, Hewitt AW. Current state and future prospects of artificial intelligence in ophthalmology: a review[J]. Clin Exp Ophthalmol, 2019, 47(1): 128-139.Hogarty DT, Mackey DA, Hewitt AW. Current state and future prospects of artificial intelligence in ophthalmology: a review[J]. Clin Exp Ophthalmol, 2019, 47(1): 128-139.
3、LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
4、Ting DSW, Peng L, Varadarajan AV, et al. Deep learning in ophthalmology: The technical and clinical considerations[J]. Prog Retin Eye Res, 2019, 72: 100759.Ting DSW, Peng L, Varadarajan AV, et al. Deep learning in ophthalmology: The technical and clinical considerations[J]. Prog Retin Eye Res, 2019, 72: 100759.
5、晏丕松, 项毅帆, 李强, 等. 眼科数据中心和智能服务云平台的建设思路[J]. 眼科学报, 2021, 36(1): 97-103.晏丕松, 项毅帆, 李强, 等. 眼科数据中心和智能服务云平台的建设思路[J]. 眼科学报, 2021, 36(1): 97-103.
6、 Establishment of ophthalmic data center and intelligent service cloud platform[J]. Yan Ke Xue Bao, 2021, 36(1): 97-103. Establishment of ophthalmic data center and intelligent service cloud platform[J]. Yan Ke Xue Bao, 2021, 36(1): 97-103.
7、Romero-Jiménez M, Santodomingo-Rubido J, Wolffsohn JS. Keratoconus: a review[J]. Cont Lens Anterior Eye, 2010, 33(4): 157-166.Romero-Jiménez M, Santodomingo-Rubido J, Wolffsohn JS. Keratoconus: a review[J]. Cont Lens Anterior Eye, 2010, 33(4): 157-166.
8、Souza MB, Medeiros FW, Souza DB, et al. Evaluation of machine learning classifiers in keratoconus detection from orbscan II examinations[J]. Clinics (Sao Paulo), 2010, 65(12): 1223-1228.Souza MB, Medeiros FW, Souza DB, et al. Evaluation of machine learning classifiers in keratoconus detection from orbscan II examinations[J]. Clinics (Sao Paulo), 2010, 65(12): 1223-1228.
9、Smadja D, Touboul D, Cohen A, et al. Detection of subclinical keratoconus using an automated decision tree classification[J]. Am J Ophthalmol, 2013, 156(2): 237-246.Smadja D, Touboul D, Cohen A, et al. Detection of subclinical keratoconus using an automated decision tree classification[J]. Am J Ophthalmol, 2013, 156(2): 237-246.
10、Ruiz Hidalgo I, Rodriguez P, Rozema JJ, et al. Evaluation of a machine-learning classifier for keratoconus detection based on scheimpflug tomography[J]. Cornea, 2016, 35(6): 827-832.Ruiz Hidalgo I, Rodriguez P, Rozema JJ, et al. Evaluation of a machine-learning classifier for keratoconus detection based on scheimpflug tomography[J]. Cornea, 2016, 35(6): 827-832.
11、Arbelaez MC, Versaci F, Vestri G, et al. Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data[J]. Ophthalmology, 2012, 119(11): 2231-2238.Arbelaez MC, Versaci F, Vestri G, et al. Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data[J]. Ophthalmology, 2012, 119(11): 2231-2238.
12、Ambrósio R Jr, Lopes BT, Faria-Correia F, et al. Integration of scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection[J]. J Refract Surg, 2017, 33(7): 434-443.Ambrósio R Jr, Lopes BT, Faria-Correia F, et al. Integration of scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection[J]. J Refract Surg, 2017, 33(7): 434-443.
13、Accardo PA, Pensiero S. Neural network-based system for early keratoconus detection from corneal topography[J]. J Biomed Inform, 2002, 35(3): 151-159.Accardo PA, Pensiero S. Neural network-based system for early keratoconus detection from corneal topography[J]. J Biomed Inform, 2002, 35(3): 151-159.
14、蓝倩倩, 陈丽妃, 黄慧, 等. 共聚焦显微镜对感染性角膜炎病原学的诊断价值[J]. 中国临床新医学, 2019, 12(6): 626-629.蓝倩倩, 陈丽妃, 黄慧, 等. 共聚焦显微镜对感染性角膜炎病原学的诊断价值[J]. 中国临床新医学, 2019, 12(6): 626-629.
15、 Diagnostic efficiency of confocal microscopy in aetiology of infectious keratitis[J]. Chinese Journal of New Clinical Medicine, 2019, 12(6): 626-629. Diagnostic efficiency of confocal microscopy in aetiology of infectious keratitis[J]. Chinese Journal of New Clinical Medicine, 2019, 12(6): 626-629.
16、Tahvildari M, Singh RB, Saeed HN. Application of artificial intelligence in the diagnosis and management of corneal diseases[J]. Semin Ophthalmol, 2021, 36(8): 641-648.Tahvildari M, Singh RB, Saeed HN. Application of artificial intelligence in the diagnosis and management of corneal diseases[J]. Semin Ophthalmol, 2021, 36(8): 641-648.
17、Saini JS, Jain AK, Kumar S, et al. Neural network approach to classify infective keratitis[J]. Curr Eye Res, 2003, 27(2): 111-116.Saini JS, Jain AK, Kumar S, et al. Neural network approach to classify infective keratitis[J]. Curr Eye Res, 2003, 27(2): 111-116.
18、Wu X, Tao Y, Qiu Q, et al. Application of image recognition-based automatic hyphae detection in fungal keratitis[J]. Australas Phys Eng Sci Med, 2018, 41(1): 95-103.Wu X, Tao Y, Qiu Q, et al. Application of image recognition-based automatic hyphae detection in fungal keratitis[J]. Australas Phys Eng Sci Med, 2018, 41(1): 95-103.
19、Wu X, Qiu Q, Liu Z, et al. Hyphae detection in fungal keratitis images with adaptive robust binary pattern[J]. IEEE Access,2018,6:13449-13460.Wu X, Qiu Q, Liu Z, et al. Hyphae detection in fungal keratitis images with adaptive robust binary pattern[J]. IEEE Access,2018,6:13449-13460.
20、Savini G, Prabhawasat P, Kojima T, et al. The challenge of dry eye diagnosis[J]. Clin Ophthalmol, 2008, 2(1): 31-55.Savini G, Prabhawasat P, Kojima T, et al. The challenge of dry eye diagnosis[J]. Clin Ophthalmol, 2008, 2(1): 31-55.
21、Yedidya T, Hartley R, Guillon JP, et al. Automatic dry eye detection[J]. Med Image Comput Comput Assist Interv, 2007, 10(Pt 1): 792-799.Yedidya T, Hartley R, Guillon JP, et al. Automatic dry eye detection[J]. Med Image Comput Comput Assist Interv, 2007, 10(Pt 1): 792-799.
22、Remeseiro B, Bolon-Canedo V, Peteiro-Barral D, et al. A methodology for improving tear film lipid layer classification[J]. IEEE J Biomed Health Inform, 2014, 18(4): 1485-1493.Remeseiro B, Bolon-Canedo V, Peteiro-Barral D, et al. A methodology for improving tear film lipid layer classification[J]. IEEE J Biomed Health Inform, 2014, 18(4): 1485-1493.
23、Peteiro-Barral D, Remeseiro B, Méndez R, et al. Evaluation of an automatic dry eye test using MCDM methods and rank correlation[J]. Med Biol Eng Comput, 2017, 55(4): 527-536.Peteiro-Barral D, Remeseiro B, Méndez R, et al. Evaluation of an automatic dry eye test using MCDM methods and rank correlation[J]. Med Biol Eng Comput, 2017, 55(4): 527-536.
24、Grus FH, Podust VN, Bruns K, et al. SELDI-TOF-MS ProteinChip array profiling of tears from patients with dry eye[J]. Invest Ophthalmol Vis Sci, 2005, 46(3): 863-876.Grus FH, Podust VN, Bruns K, et al. SELDI-TOF-MS ProteinChip array profiling of tears from patients with dry eye[J]. Invest Ophthalmol Vis Sci, 2005, 46(3): 863-876.
25、Grus FH, Augustin AJ. Analysis of tear protein patterns by a neural network as a diagnostical tool for the detection of dry eyes[J]. Electrophoresis, 1999, 20(4-5): 875-880.Grus FH, Augustin AJ. Analysis of tear protein patterns by a neural network as a diagnostical tool for the detection of dry eyes[J]. Electrophoresis, 1999, 20(4-5): 875-880.
26、Tabuchi H, Masumoto H. Objective evaluation of allergic conjunctival disease (with a focus on the application of artificial intelligence technology)[J]. Allergol Int, 2020, 69(4): 505-509.Tabuchi H, Masumoto H. Objective evaluation of allergic conjunctival disease (with a focus on the application of artificial intelligence technology)[J]. Allergol Int, 2020, 69(4): 505-509.
27、Takamura E, Uchio E, Ebihara N, et al. Japanese guidelines for allergic conjunctival diseases 2017[J]. Allergol Int, 2017, 66(2): 220-229.Takamura E, Uchio E, Ebihara N, et al. Japanese guidelines for allergic conjunctival diseases 2017[J]. Allergol Int, 2017, 66(2): 220-229.
28、Yoneda T, Sumi T, Takahashi A, et al. Automated hyperemia analysis software: reliability and reproducibility in healthy subjects[J]. Jpn J Ophthalmol, 2012, 56(1): 1-7.Yoneda T, Sumi T, Takahashi A, et al. Automated hyperemia analysis software: reliability and reproducibility in healthy subjects[J]. Jpn J Ophthalmol, 2012, 56(1): 1-7.
29、Sánchez Brea ML, Barreira Rodríguez N, Sánchez Maro?o N, et al. On the development of conjunctival hyperemia computer-assisted diagnosis tools: Influence of feature selection and class imbalance in automatic gradings[J]. Artif Intell Med, 2016, 71: 30-42.Sánchez Brea ML, Barreira Rodríguez N, Sánchez Maro?o N, et al. On the development of conjunctival hyperemia computer-assisted diagnosis tools: Influence of feature selection and class imbalance in automatic gradings[J]. Artif Intell Med, 2016, 71: 30-42.
30、Sánchez Brea ML, Barreira Rodríguez N, Mosquera González A, et al. Defining the optimal region of interest for hyperemia grading in the bulbar conjunctiva[J]. Comput Math Methods Med, 2016, 2016: 3695014.Sánchez Brea ML, Barreira Rodríguez N, Mosquera González A, et al. Defining the optimal region of interest for hyperemia grading in the bulbar conjunctiva[J]. Comput Math Methods Med, 2016, 2016: 3695014.
31、Derakhshani R, Saripalle SK, Doynov P. Computational methods for objective assessment of conjunctival vascularity[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2012, 2012: 1490-1493.Derakhshani R, Saripalle SK, Doynov P. Computational methods for objective assessment of conjunctival vascularity[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2012, 2012: 1490-1493.
32、Lee CM, Afshari NA. The global state of cataract blindness[J]. Curr Opin Ophthalmol, 2017, 28(1): 98-103.Lee CM, Afshari NA. The global state of cataract blindness[J]. Curr Opin Ophthalmol, 2017, 28(1): 98-103.
33、Gao X, Lin S, Wong TY. Automatic feature learning to grade nuclear cataracts based on deep learning[J]. IEEE Trans Biomed Eng, 2015, 62(11): 2693-2701.Gao X, Lin S, Wong TY. Automatic feature learning to grade nuclear cataracts based on deep learning[J]. IEEE Trans Biomed Eng, 2015, 62(11): 2693-2701.
34、Li H, Lim JH, Liu J, et al. An automatic diagnosis system of nuclear cataract using slit-lamp images[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2009, 2009: 3693-3696.Li H, Lim JH, Liu J, et al. An automatic diagnosis system of nuclear cataract using slit-lamp images[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2009, 2009: 3693-3696.
35、Li H, Lim JH, Liu J, et al. A computer-aided diagnosis system of nuclear cataract[J]. IEEE Trans Biomed Eng, 2010, 57(7): 1690-1698.Li H, Lim JH, Liu J, et al. A computer-aided diagnosis system of nuclear cataract[J]. IEEE Trans Biomed Eng, 2010, 57(7): 1690-1698.
36、Guo L, Yang J, Peng L, et al. A computer-aided healthcare system for cataract classification and grading based on fundus image analysis[J]. Computers in Industry, 2015, 69: 72-80.Guo L, Yang J, Peng L, et al. A computer-aided healthcare system for cataract classification and grading based on fundus image analysis[J]. Computers in Industry, 2015, 69: 72-80.
37、Xu X, Zhang L, Li J, et al. A hybrid global-local representation CNN model for automatic cataract grading[J]. IEEE J Biomed Health Inform, 2020, 24(2): 556-567.Xu X, Zhang L, Li J, et al. A hybrid global-local representation CNN model for automatic cataract grading[J]. IEEE J Biomed Health Inform, 2020, 24(2): 556-567.
38、Zhang H, Niu K, Xiong Y, et al. Automatic cataract grading methods based on deep learning[J]. Comput Methods Programs Biomed, 2019, 182: 104978.Zhang H, Niu K, Xiong Y, et al. Automatic cataract grading methods based on deep learning[J]. Comput Methods Programs Biomed, 2019, 182: 104978.
39、Xiong L, Li H, Xu L. An approach to evaluate blurriness in retinal images with vitreous opacity for cataract diagnosis[J]. J Healthc Eng, 2017, 2017: 5645498.Xiong L, Li H, Xu L. An approach to evaluate blurriness in retinal images with vitreous opacity for cataract diagnosis[J]. J Healthc Eng, 2017, 2017: 5645498.
40、Yang JJ, Li J, Shen R, et al. Exploiting ensemble learning for automatic cataract detection and grading[J]. Comput Methods Programs Biomed, 2016, 124: 45-57.Yang JJ, Li J, Shen R, et al. Exploiting ensemble learning for automatic cataract detection and grading[J]. Comput Methods Programs Biomed, 2016, 124: 45-57.
41、Lin H, Li R, Liu Z, et al. Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: a multicentre randomized controlled trial[J]. EClinicalMedicine, 2019, 9: 52-59.Lin H, Li R, Liu Z, et al. Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: a multicentre randomized controlled trial[J]. EClinicalMedicine, 2019, 9: 52-59.
42、Nicoar? S. The mechanisms of neuronal death in glaucoma[J]. Oftalmologia, 2000, 51(2): 4-6.Nicoar? S. The mechanisms of neuronal death in glaucoma[J]. Oftalmologia, 2000, 51(2): 4-6.
43、Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review[J]. JAMA, 2014, 311(18): 1901-1911.Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review[J]. JAMA, 2014, 311(18): 1901-1911.
44、Casson RJ, Chidlow G, Wood JP, et al. Definition of glaucoma: clinical and experimental concepts[J]. Clin Exp Ophthalmol, 2012, 40(4): 341-349.Casson RJ, Chidlow G, Wood JP, et al. Definition of glaucoma: clinical and experimental concepts[J]. Clin Exp Ophthalmol, 2012, 40(4): 341-349.
45、Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[J]. Ophthalmology, 2014, 121(11): 2081-2090.Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[J]. Ophthalmology, 2014, 121(11): 2081-2090.
46、Devalla SK, Liang Z, Pham TH, et al. Glaucoma management in the era of artificial intelligence[J]. Br J Ophthalmol, 2020, 104(3): 301-311.Devalla SK, Liang Z, Pham TH, et al. Glaucoma management in the era of artificial intelligence[J]. Br J Ophthalmol, 2020, 104(3): 301-311.
47、Li Z, He Y, Keel S, et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs[J]. Ophthalmology, 2018, 125(8): 1199-1206.Li Z, He Y, Keel S, et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs[J]. Ophthalmology, 2018, 125(8): 1199-1206.
48、Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. JAMA, 2017, 318(22): 2211-2223.Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. JAMA, 2017, 318(22): 2211-2223.
49、Leung CK, Cheung CY, Weinreb RN, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a comparison between the fast and the regular retinal nerve fiber layer scans[J]. Ophthalmology, 2011, 118(4): 763-767.Leung CK, Cheung CY, Weinreb RN, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a comparison between the fast and the regular retinal nerve fiber layer scans[J]. Ophthalmology, 2011, 118(4): 763-767.
50、Na JH, Sung KR, Baek S, et al. Detection of glaucoma progression by assessment of segmented macular thickness data obtained using spectral domain optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2012, 53(7): 3817-3826.Na JH, Sung KR, Baek S, et al. Detection of glaucoma progression by assessment of segmented macular thickness data obtained using spectral domain optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2012, 53(7): 3817-3826.
51、Na JH, Sung KR, Lee JR, et al. Detection of glaucomatous progression by spectral-domain optical coherence tomography[J]. Ophthalmology, 2013, 120(7): 1388-1395.Na JH, Sung KR, Lee JR, et al. Detection of glaucomatous progression by spectral-domain optical coherence tomography[J]. Ophthalmology, 2013, 120(7): 1388-1395.
52、Ran AR, Tham CC, Chan PP, et al. Deep learning in glaucoma with optical coherence tomography: a review[J]. Eye (Lond), 2021, 35(1): 188-201.Ran AR, Tham CC, Chan PP, et al. Deep learning in glaucoma with optical coherence tomography: a review[J]. Eye (Lond), 2021, 35(1): 188-201.
53、Kucur ?S, Holló G, Sznitman R. A deep learning approach to automatic detection of early glaucoma from visual fields[J]. PLoS One, 2018, 13(11): e0206081.Kucur ?S, Holló G, Sznitman R. A deep learning approach to automatic detection of early glaucoma from visual fields[J]. PLoS One, 2018, 13(11): e0206081.
54、Xu Y, Liu J, Tan NM, et al. Anterior chamber angle classification using multiscale histograms of oriented gradients for glaucoma subtype identification[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2012, 2012: 3167-3170.Xu Y, Liu J, Tan NM, et al. Anterior chamber angle classification using multiscale histograms of oriented gradients for glaucoma subtype identification[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2012, 2012: 3167-3170.
55、Xu Y, Liu J, Cheng J, et al. Automated anterior chamber angle localization and glaucoma type classification in OCT images[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2013, 2013: 7380-7383.Xu Y, Liu J, Cheng J, et al. Automated anterior chamber angle localization and glaucoma type classification in OCT images[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2013, 2013: 7380-7383.
56、Li F, Wang Z, Qu G, et al. Automatic differentiation of glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network[J]. BMC Med Imaging, 2018, 18(1): 35.Li F, Wang Z, Qu G, et al. Automatic differentiation of glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network[J]. BMC Med Imaging, 2018, 18(1): 35.
57、Berner ES, Ozaydin B. Benefits and risks of machine learning decision support systems[J]. JAMA, 2017, 318(23): 2353-2354.Berner ES, Ozaydin B. Benefits and risks of machine learning decision support systems[J]. JAMA, 2017, 318(23): 2353-2354.
58、Parikh D, Armstrong G, Liou V, et al. Advances in telemedicine in ophthalmology[J]. Semin Ophthalmol, 2020, 35(4): 210-215.Parikh D, Armstrong G, Liou V, et al. Advances in telemedicine in ophthalmology[J]. Semin Ophthalmol, 2020, 35(4): 210-215.
59、Aloudat M, Faezipour M, El-Sayed A. High intraocular pressure detection from frontal eye images: a machine learning based approach[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2018, 2018: 5406-5409.Aloudat M, Faezipour M, El-Sayed A. High intraocular pressure detection from frontal eye images: a machine learning based approach[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2018, 2018: 5406-5409.