1、R aghunath A , Perumal E. Micro-RNAs and their roles in eye
disorders[ J]. Ophthalmic Res, 2015, 53(4): 169-186.R aghunath A , Perumal E. Micro-RNAs and their roles in eye
disorders[ J]. Ophthalmic Res, 2015, 53(4): 169-186.
2、Filipowicz%20W%2C%20Bhattacharyya%20SN%2C%20Sonenberg%20N.%20Mechanisms%20of%20post-transcriptional%20regulation%20by%20microRNAs%3A%20are%20the%20answers%20in%20sight%3F%5B%20J%5D.%20%0ANat%20Rev%20Genet%2C%202008%2C%209(2)%3A%20102-114.Filipowicz%20W%2C%20Bhattacharyya%20SN%2C%20Sonenberg%20N.%20Mechanisms%20of%20post-transcriptional%20regulation%20by%20microRNAs%3A%20are%20the%20answers%20in%20sight%3F%5B%20J%5D.%20%0ANat%20Rev%20Genet%2C%202008%2C%209(2)%3A%20102-114.
3、Xu S. microRNA expression in the eyes and their significance in relation
to functions[ J]. Prog Retin Eye Res, 2009, 28(2): 87-116.Xu S. microRNA expression in the eyes and their significance in relation
to functions[ J]. Prog Retin Eye Res, 2009, 28(2): 87-116.
4、Li C, Li Y, Lu Y, et al. miR-26 family and its target genes in
tumorigenesis and development[ J]. Crit Rev Oncol Hematol, 2021,
157: 103124.Li C, Li Y, Lu Y, et al. miR-26 family and its target genes in
tumorigenesis and development[ J]. Crit Rev Oncol Hematol, 2021,
157: 103124.
5、Loscher CJ, Hokamp K, Kenna PF, et al. Altered retinal microRNA
expression profile in a mouse model of retinitis pigmentosa[ J].
Genome Biol, 2007, 8(11): R248.Loscher CJ, Hokamp K, Kenna PF, et al. Altered retinal microRNA
expression profile in a mouse model of retinitis pigmentosa[ J].
Genome Biol, 2007, 8(11): R248.
6、Xu S, Witmer PD, Lumayag S, et al. microRNA (miRNA) transcriptome
of mouse retina and identification of a sensory organ-specific miRNA
cluster[ J]. J Biol Chem, 2007, 282(34): 25053-25066.Xu S, Witmer PD, Lumayag S, et al. microRNA (miRNA) transcriptome
of mouse retina and identification of a sensory organ-specific miRNA
cluster[ J]. J Biol Chem, 2007, 282(34): 25053-25066.
7、Ryan David G, Michelle OF, Lavker Robert M. microRNAs of the
mammalian eye display distinct and overlapping tissue specificity[ J].
Mol Vis, 2006, 12: 1175-84.Ryan David G, Michelle OF, Lavker Robert M. microRNAs of the
mammalian eye display distinct and overlapping tissue specificity[ J].
Mol Vis, 2006, 12: 1175-84.
8、Arora H, Qureshi R, Park AK, et al. Coordinated regulation of ATF2 by
miR-26b in γ-irradiated lung cancer cells[ J]. PLoS One, 2011, 6(8):
e23802.Arora H, Qureshi R, Park AK, et al. Coordinated regulation of ATF2 by
miR-26b in γ-irradiated lung cancer cells[ J]. PLoS One, 2011, 6(8):
e23802.
9、Xiang S, Li J, Zhang Z. miR-26b inhibits isoproterenol-induced cardiac
fibrosis via the Keap1/Nrf2 signaling pathway[ J]. Exp Ther Med, 2020,
19(3):2067-2074.Xiang S, Li J, Zhang Z. miR-26b inhibits isoproterenol-induced cardiac
fibrosis via the Keap1/Nrf2 signaling pathway[ J]. Exp Ther Med, 2020,
19(3):2067-2074.
10、Yang P, Wu P, Liu X, et al. miR-26b suppresses the development of
stanford type A aortic dissection by regulating HMGA2 and TGF-β/
Smad3 signaling pathway[ J]. Ann Thorac Cardiovasc Surg, 2020,
26(3): 140-150.Yang P, Wu P, Liu X, et al. miR-26b suppresses the development of
stanford type A aortic dissection by regulating HMGA2 and TGF-β/
Smad3 signaling pathway[ J]. Ann Thorac Cardiovasc Surg, 2020,
26(3): 140-150.
11、Shi E, Ye XN, Xie LY. miRNA-26b suppresses the TGF-β2-induced
progression of HLE-B3 cells via the PI3K/Akt pathway[ J]. Int J
Ophthalmol. 2021;14(9):1350-1358.Shi E, Ye XN, Xie LY. miRNA-26b suppresses the TGF-β2-induced
progression of HLE-B3 cells via the PI3K/Akt pathway[ J]. Int J
Ophthalmol. 2021;14(9):1350-1358.
12、Liang S, Guo H, Ma K, et al. A PLCB1-PI3K-AKT signaling axis
activates EMT to promote cholangiocarcinoma progression[ J]. Cancer
Res, 2021, 81(23): 5889-5903.Liang S, Guo H, Ma K, et al. A PLCB1-PI3K-AKT signaling axis
activates EMT to promote cholangiocarcinoma progression[ J]. Cancer
Res, 2021, 81(23): 5889-5903.
13、Lin CZ, Ou RW, Hu YH. Lentiviral-mediated microRNA-26b up-regulation inhibits proliferation and migration of hepatocellular
carcinoma cells[ J]. Kaohsiung J Med Sci, 2018, 34(10): 547-555.Lin CZ, Ou RW, Hu YH. Lentiviral-mediated microRNA-26b up-regulation inhibits proliferation and migration of hepatocellular
carcinoma cells[ J]. Kaohsiung J Med Sci, 2018, 34(10): 547-555.
14、Shen G, Lin Y, Yang X, et al. microRNA-26b inhibits epithelial-mesenchymal transition in hepatocellular carcinoma by targeting
USP9X[ J]. BMC Cancer, 2014, 14: 393.Shen G, Lin Y, Yang X, et al. microRNA-26b inhibits epithelial-mesenchymal transition in hepatocellular carcinoma by targeting
USP9X[ J]. BMC Cancer, 2014, 14: 393.
15、Li H, Sun Q, Han B, et al. miR-26b inhibits hepatocellular carcinoma
cell proliferation, migration, and invasion by targeting EphA2[ J]. Int J
Clin Exp Pathol, 2015, 8(5): 4782-4790.Li H, Sun Q, Han B, et al. miR-26b inhibits hepatocellular carcinoma
cell proliferation, migration, and invasion by targeting EphA2[ J]. Int J
Clin Exp Pathol, 2015, 8(5): 4782-4790.
16、Jin F, Wang Y, Li M, et al. miR-26 enhances chemosensitivity and
promotes apoptosis of hepatocellular carcinoma cells through
inhibiting autophagy[ J]. Cell Death Dis, 2017, 8(1): e2540.Jin F, Wang Y, Li M, et al. miR-26 enhances chemosensitivity and
promotes apoptosis of hepatocellular carcinoma cells through
inhibiting autophagy[ J]. Cell Death Dis, 2017, 8(1): e2540.
17、Chen E, Li E, Liu H, et al. miR-26b enhances the sensitivity of
hepatocellular carcinoma to Doxorubicin via USP9X-dependent
degradation of p53 and regulation of autophagy[ J]. Int J Biol Sci, 2021,
17(3): 781-795.Chen E, Li E, Liu H, et al. miR-26b enhances the sensitivity of
hepatocellular carcinoma to Doxorubicin via USP9X-dependent
degradation of p53 and regulation of autophagy[ J]. Int J Biol Sci, 2021,
17(3): 781-795.
18、Wang Y, Sun B, Zhao X, et al. Twist1-related miR-26b-5p suppresses
epithelial-mesenchymal transition, migration and invasion by targeting
SMAD1 in hepatocellular carcinoma[ J]. Oncotarget, 2016, 7(17):
24383-24401.Wang Y, Sun B, Zhao X, et al. Twist1-related miR-26b-5p suppresses
epithelial-mesenchymal transition, migration and invasion by targeting
SMAD1 in hepatocellular carcinoma[ J]. Oncotarget, 2016, 7(17):
24383-24401.
19、Chen S, Yuan M, Liu Y, et al. Landscape of microRNA in the aqueous
humour of proliferative diabetic retinopathy as assessed by next-generation sequencing[ J]. Clin Exp Ophthalmol, 2019, 47(7): 925-
936.Chen S, Yuan M, Liu Y, et al. Landscape of microRNA in the aqueous
humour of proliferative diabetic retinopathy as assessed by next-generation sequencing[ J]. Clin Exp Ophthalmol, 2019, 47(7): 925-
936.
20、Drewry M, Helwa I, Allingham RR, et al. miRNA profile in three
different normal human ocular tissues by miRNA-seq[ J]. Invest
Ophthalmol Vis Sci, 2016, 57(8): 3731-3739.Drewry M, Helwa I, Allingham RR, et al. miRNA profile in three
different normal human ocular tissues by miRNA-seq[ J]. Invest
Ophthalmol Vis Sci, 2016, 57(8): 3731-3739.
21、Karali M, Peluso I, Gennarino VA, et al. miRNeye: a microRNA
expression atlas of the mouse eye[ J]. BMC Genomics, 2010, 11: 715.Karali M, Peluso I, Gennarino VA, et al. miRNeye: a microRNA
expression atlas of the mouse eye[ J]. BMC Genomics, 2010, 11: 715.
22、Genini S, Guziewicz KE, Beltran WA, et al. Altered miRNA expression
in canine retinas during normal development and in models of retinal
degeneration[ J]. BMC Genomics, 2014, 15(1): 172.Genini S, Guziewicz KE, Beltran WA, et al. Altered miRNA expression
in canine retinas during normal development and in models of retinal
degeneration[ J]. BMC Genomics, 2014, 15(1): 172.
23、余进海, 刘琪, 廖洪斐, 等. 增生性玻璃体视网膜病变中调控上皮间质转化的研究进展[ J]. 眼科新进展, 2019, 39(10)992-995.
Yu JH, Liu Q, Liao HF, et al. Advances in the regulation of epithelialmesenchymal transition in Proliferative vitreoretinopathy[ J]. Recent
Adv Ophthalmol, 2019, 39(10)992-995.余进海, 刘琪, 廖洪斐, 等. 增生性玻璃体视网膜病变中调控上皮间质转化的研究进展[ J]. 眼科新进展, 2019, 39(10)992-995.
Yu JH, Liu Q, Liao HF, et al. Advances in the regulation of epithelialmesenchymal transition in Proliferative vitreoretinopathy[ J]. Recent
Adv Ophthalmol, 2019, 39(10)992-995.
24、Chen X, Ye S, Xiao W, et al. Differentially expressed microRNAs in
TGFβ2-induced epithelial-mesenchymal transition in retinal pigment
epithelium cells[ J]. Int J Mol Med, 2014, 33(5): 1195-1200.Chen X, Ye S, Xiao W, et al. Differentially expressed microRNAs in
TGFβ2-induced epithelial-mesenchymal transition in retinal pigment
epithelium cells[ J]. Int J Mol Med, 2014, 33(5): 1195-1200.
25、Chen X, Xiao W, Chen W, et al. microRNA-26a and-26b inhibit lens
fibrosis and cataract by negatively regulating Jagged-1/Notch signaling
pathway[ J]. Cell Death Differ, 2017, 24(11): 1990.Chen X, Xiao W, Chen W, et al. microRNA-26a and-26b inhibit lens
fibrosis and cataract by negatively regulating Jagged-1/Notch signaling
pathway[ J]. Cell Death Differ, 2017, 24(11): 1990.
26、江华维, 刘霞, 王艳, 等. 翼状胬肉发病机制的研究进展[ J]. 昆明医科大学学报, 2023, 44(1)144-150.
Jiang HW, Liu X, Wang Y, et al. Research progress on the pathogenesis
of pterygium[ J]. J Kunming Med Univ, 2023, 44(1)144-150.江华维, 刘霞, 王艳, 等. 翼状胬肉发病机制的研究进展[ J]. 昆明医科大学学报, 2023, 44(1)144-150.
Jiang HW, Liu X, Wang Y, et al. Research progress on the pathogenesis
of pterygium[ J]. J Kunming Med Univ, 2023, 44(1)144-150.
27、Yu J, Luo J, Li P, et al. Identification of the circRNA-miRNA-mRNA
regulatory network in pterygium-associated conjunctival epithelium[ J].
Biomed Res Int, 2022, 2022: 2673890.Yu J, Luo J, Li P, et al. Identification of the circRNA-miRNA-mRNA
regulatory network in pterygium-associated conjunctival epithelium[ J].
Biomed Res Int, 2022, 2022: 2673890.
28、Dong N, Xu B, Benya SR, et al. MiRNA-26b inhibits the proliferation,
migration, and epithelial-mesenchymal transition of lens epithelial
cells[ J]. Mol Cell Biochem, 2014, 396(1-2): 229-238.Dong N, Xu B, Benya SR, et al. MiRNA-26b inhibits the proliferation,
migration, and epithelial-mesenchymal transition of lens epithelial
cells[ J]. Mol Cell Biochem, 2014, 396(1-2): 229-238.
29、Dong N, Xu B, Xu J. EGF-mediated overexpression of myc attenuates
miR-26b by recruiting HDAC3 to induce epithelial-mesenchymal
transition of lens epithelial cells[ J]. Biomed Res Int, 2018, 2018:
7148023.Dong N, Xu B, Xu J. EGF-mediated overexpression of myc attenuates
miR-26b by recruiting HDAC3 to induce epithelial-mesenchymal
transition of lens epithelial cells[ J]. Biomed Res Int, 2018, 2018:
7148023.
30、Li Y, Zhang W, Ke H, et al. Rs1894720 polymorphism is associated
with the risk of age-related cataract by regulating the proliferation of
epithelial cells in the lens via the signalling pathway of MIAT/miR-
26b/BCL2L2[ J]. Arch Med Sci, 2022, 18(1): 223-236.Li Y, Zhang W, Ke H, et al. Rs1894720 polymorphism is associated
with the risk of age-related cataract by regulating the proliferation of
epithelial cells in the lens via the signalling pathway of MIAT/miR-
26b/BCL2L2[ J]. Arch Med Sci, 2022, 18(1): 223-236.
31、王资懿, 吴灵丹, 陈洁, 等. 生长因子与增生性玻璃体视网膜病变相关性的研究进展[ J]. 国际眼科杂志, 2022, 22(1): 71-75.
Wang ZY, Wu LD, Chen J, et al. Advances in the correlation between
growth factors and proliferative vitreoretinopathy[ J]. Int Eye Sci, 2022,
22(1): 71-75.王资懿, 吴灵丹, 陈洁, 等. 生长因子与增生性玻璃体视网膜病变相关性的研究进展[ J]. 国际眼科杂志, 2022, 22(1): 71-75.
Wang ZY, Wu LD, Chen J, et al. Advances in the correlation between
growth factors and proliferative vitreoretinopathy[ J]. Int Eye Sci, 2022,
22(1): 71-75.
32、杨俊楠, 包秀丽. 微小RNA调控增生性玻璃体视网膜病变的研究进展[ J]. 国际眼科杂志, 2022, 22(1): 67-70.
Yang JN, Bao XL Research progress in the regulation of proliferative
vitreoretinopathy by microRNAs [ J]. Int J Ophthalmol, 2022, 22 (1):
67-70.杨俊楠, 包秀丽. 微小RNA调控增生性玻璃体视网膜病变的研究进展[ J]. 国际眼科杂志, 2022, 22(1): 67-70.
Yang JN, Bao XL Research progress in the regulation of proliferative
vitreoretinopathy by microRNAs [ J]. Int J Ophthalmol, 2022, 22 (1):
67-70.
33、Tsotridou E, Loukovitis E, Zapsalis K, et al. A review of last decade
developments on epiretinal membrane pathogenesis[ J]. Med
Hypothesis Discov Innov Ophthalmol, 2020, 9(2): 91-110.Tsotridou E, Loukovitis E, Zapsalis K, et al. A review of last decade
developments on epiretinal membrane pathogenesis[ J]. Med
Hypothesis Discov Innov Ophthalmol, 2020, 9(2): 91-110.
34、隋文婕, 张晶晶, 汤庆丽, 等. lncRNA PVT1及miR-26b在增生型糖
尿病视网膜病变患眼玻璃体、增生膜中的表达研究[ J]. 临床眼科杂志, 2020, 28(4): 289-293.
Sui WJ, Zhang JJ, Tang QL, et al. Expressions of lncRNA PVT1 and
miR-26b in the vitreous and proliferative membrane of proliferative
diabetic retinopathy[ J]. J Clin Ophthalmol, 2020, 28(4): 289-293.隋文婕, 张晶晶, 汤庆丽, 等. lncRNA PVT1及miR-26b在增生型糖
尿病视网膜病变患眼玻璃体、增生膜中的表达研究[ J]. 临床眼科杂志, 2020, 28(4): 289-293.
Sui WJ, Zhang JJ, Tang QL, et al. Expressions of lncRNA PVT1 and
miR-26b in the vitreous and proliferative membrane of proliferative
diabetic retinopathy[ J]. J Clin Ophthalmol, 2020, 28(4): 289-293.
35、Zhang Y, Wei J, Zhang L, et al. Extracellular vesicle-derived miR-26b-5p
is up-regulated in the serum of patients with diabetic retinopathy[ J].
Comb Chem High Throughput Screen, 2022, 25(5): 877-882.Zhang Y, Wei J, Zhang L, et al. Extracellular vesicle-derived miR-26b-5p
is up-regulated in the serum of patients with diabetic retinopathy[ J].
Comb Chem High Throughput Screen, 2022, 25(5): 877-882.
36、Spaide RF, Jaffe GJ, Sarraf D, et al. Consensus nomenclature for
reporting neovascular age-related macular degeneration data: consensus
on neovascular age-related macular degeneration nomenclature study
group[ J]. Ophthalmology, 2020, 127(5): 616-636.Spaide RF, Jaffe GJ, Sarraf D, et al. Consensus nomenclature for
reporting neovascular age-related macular degeneration data: consensus
on neovascular age-related macular degeneration nomenclature study
group[ J]. Ophthalmology, 2020, 127(5): 616-636.
37、张敬法, 赵珍珍. 湿性年龄相关性黄斑变性发病机制及治疗[ J]. 眼科新进展, 2022, 42(2): 85-98.
Zhang JF, Zhao ZZ. Pathogenesis and treatment of wet age-related
macular degeneration[ J]. Recent Adv Ophthalmol, 2022, 42(2): 85-
98.张敬法, 赵珍珍. 湿性年龄相关性黄斑变性发病机制及治疗[ J]. 眼科新进展, 2022, 42(2): 85-98.
Zhang JF, Zhao ZZ. Pathogenesis and treatment of wet age-related
macular degeneration[ J]. Recent Adv Ophthalmol, 2022, 42(2): 85-
98.
38、Ertekin%20S%2C%20Y%C4%B1ld%C4%B1r%C4%B1m%20O%2C%20Din%C3%A7%20E%2C%20et%20al.%20Evaluation%20of%20circulating%20miRNAs%20%0Ain%20wet%20age-related%20macular%20degeneration%5B%20J%5D.%20Mol%20Vis%2C%202014%2C%2020%3A%201057-%0A1066.Ertekin%20S%2C%20Y%C4%B1ld%C4%B1r%C4%B1m%20O%2C%20Din%C3%A7%20E%2C%20et%20al.%20Evaluation%20of%20circulating%20miRNAs%20%0Ain%20wet%20age-related%20macular%20degeneration%5B%20J%5D.%20Mol%20Vis%2C%202014%2C%2020%3A%201057-%0A1066.
39、Zheng J, Hu L, Cheng J, et al. lncRNA PVT1 promotes the angiogenesis
of vascular endothelial cell by targeting miR 26b to activate CTGF/
ANGPT2[ J]. Int J Mol Med, 2018, 42(1): 489-496.Zheng J, Hu L, Cheng J, et al. lncRNA PVT1 promotes the angiogenesis
of vascular endothelial cell by targeting miR 26b to activate CTGF/
ANGPT2[ J]. Int J Mol Med, 2018, 42(1): 489-496.
40、郑积富. 长链非编码RNA PVT1通过调控miR-26b促进血管新生的机制研究[D]. 南昌: 南昌大学.
Zheng JF. Mechanism of long-chain non-coding RNA PVT1 promoting
angiogenesis by regulating miR-26b[D].Nanchang: Nanchang
University.郑积富. 长链非编码RNA PVT1通过调控miR-26b促进血管新生的机制研究[D]. 南昌: 南昌大学.
Zheng JF. Mechanism of long-chain non-coding RNA PVT1 promoting
angiogenesis by regulating miR-26b[D].Nanchang: Nanchang
University.