1、Johnstone RM, Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation. Association
of plasma membrane activities with released vesicles
(exosomes)[J]. J Biol Chem, 1987, 262(19): 9412-9420.Johnstone RM, Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation. Association
of plasma membrane activities with released vesicles
(exosomes)[J]. J Biol Chem, 1987, 262(19): 9412-9420.
2、Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478):
eaau6977.Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478):
eaau6977.
3、Mead B, Tomarev S. Extracellular vesicle therapy for retinal diseases[J]. Prog Retin Eye Res, 2020, 79: 100849.Mead B, Tomarev S. Extracellular vesicle therapy for retinal diseases[J]. Prog Retin Eye Res, 2020, 79: 100849.
4、Liu J, Jiang F, Jiang Y, et al. Roles of exosomes in ocular diseases[ J]. Int J Nanomedicine, 2020, 15: 10519-10538.Liu J, Jiang F, Jiang Y, et al. Roles of exosomes in ocular diseases[ J]. Int J Nanomedicine, 2020, 15: 10519-10538.
5、Conde-Vancells J, Rodriguez-Suarez E, Embade N, et al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes[J]. J Proteome Res, 2008, 7(12): 5157-5166.
Conde-Vancells J, Rodriguez-Suarez E, Embade N, et al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes[J]. J Proteome Res, 2008, 7(12): 5157-5166.
6、Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release[J]. Cell Mol Life Sci, 2018, 75(2): 193-208.
Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release[J]. Cell Mol Life Sci, 2018, 75(2): 193-208.
7、Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication[J]. Nat Cell Biol, 2019, 21(1): 9-17.
Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication[J]. Nat Cell Biol, 2019, 21(1): 9-17.
8、Skotland T, Sandvig K, Llorente A. Lipids in exosomes: current knowledge and the way forward[J]. Prog Lipid Res, 2017, 66: 30-41.
Skotland T, Sandvig K, Llorente A. Lipids in exosomes: current knowledge and the way forward[J]. Prog Lipid Res, 2017, 66: 30-41.
9、Pegtel DM, Gould SJ. Exosomes[J]. Annu Rev Biochem, 2019, 88: 487-514.
Pegtel DM, Gould SJ. Exosomes[J]. Annu Rev Biochem, 2019, 88: 487-514.
10、Cheng J, Meng J, Zhu L, et al. Exosomal noncoding RNAs in Glioma: biological functions and potential clinical applications[J]. Mol Cancer, 2020, 19(1): 66.
Cheng J, Meng J, Zhu L, et al. Exosomal noncoding RNAs in Glioma: biological functions and potential clinical applications[J]. Mol Cancer, 2020, 19(1): 66.
11、Gurunathan S, Kang MH, Jeyaraj M, et al. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes[J]. Cells, 2019, 8(4): 307.
Gurunathan S, Kang MH, Jeyaraj M, et al. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes[J]. Cells, 2019, 8(4): 307.
12、Juan T, Fürthauer M. Biogenesis and function of ESCRT-dependent extracellular vesicles[J]. Semin Cell Dev Biol, 2018, 74: 66-77.
Juan T, Fürthauer M. Biogenesis and function of ESCRT-dependent extracellular vesicles[J]. Semin Cell Dev Biol, 2018, 74: 66-77.
13、Ludwig N, Whiteside TL, Reichert TE. Challenges in exosome isolation and analysis in health and disease[J]. Int J Mol Sci, 2019, 20(19): 4684.
Ludwig N, Whiteside TL, Reichert TE. Challenges in exosome isolation and analysis in health and disease[J]. Int J Mol Sci, 2019, 20(19): 4684.
14、Pittenger MF, MacKay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411): 143-147.
Pittenger MF, MacKay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411): 143-147.
15、Yaghoubi Y, Movassaghpour A, Zamani M, et al. Human umbilical cord mesenchymal stem cells derived-exosomes in diseases treatment[J]. Life Sci, 2019, 233: 116733.
Yaghoubi Y, Movassaghpour A, Zamani M, et al. Human umbilical cord mesenchymal stem cells derived-exosomes in diseases treatment[J]. Life Sci, 2019, 233: 116733.
16、Shen T, Zheng Q, Luo H, et al. Exosomal miR-19a from adipose-derived stem cells suppresses differentiation of corneal keratocytes into myofibroblasts[J]. Aging (Albany NY), 2020, 12(5): 4093-4110.
Shen T, Zheng Q, Luo H, et al. Exosomal miR-19a from adipose-derived stem cells suppresses differentiation of corneal keratocytes into myofibroblasts[J]. Aging (Albany NY), 2020, 12(5): 4093-4110.
17、Shen T, Zheng QQ, Shen J, et al. Effects of adipose-derived mesenchymal stem cell exosomes on corneal stromal fibroblast viability and extracellular matrix synthesis[J]. Chin Med J (Engl), 2018, 131(6): 704-712.
Shen T, Zheng QQ, Shen J, et al. Effects of adipose-derived mesenchymal stem cell exosomes on corneal stromal fibroblast viability and extracellular matrix synthesis[J]. Chin Med J (Engl), 2018, 131(6): 704-712.
18、Shojaati G, Khandaker I, Funderburgh ML, et al. Mesenchymal stem cells reduce corneal fibrosis and inflammation via extracellular vesicle-mediated delivery of miRNA[J]. Stem Cells Transl Med, 2019, 8(11): 1192-1201.
Shojaati G, Khandaker I, Funderburgh ML, et al. Mesenchymal stem cells reduce corneal fibrosis and inflammation via extracellular vesicle-mediated delivery of miRNA[J]. Stem Cells Transl Med, 2019, 8(11): 1192-1201.
19、Tang Q, Lu B, He J, et al. Exosomes-loaded thermosensitive hydrogels for corneal epithelium and stroma regeneration[J]. Biomaterials, 2022, 280: 121320.
Tang Q, Lu B, He J, et al. Exosomes-loaded thermosensitive hydrogels for corneal epithelium and stroma regeneration[J]. Biomaterials, 2022, 280: 121320.
20、Jia Z, Lv Y, Zhang W, et al. Mesenchymal stem cell derived exosomes-based immunological signature in a rat model of corneal allograft rejection therapy[J]. Front Biosci (Landmark Ed), 2022, 27(3): 86.
Jia Z, Lv Y, Zhang W, et al. Mesenchymal stem cell derived exosomes-based immunological signature in a rat model of corneal allograft rejection therapy[J]. Front Biosci (Landmark Ed), 2022, 27(3): 86.
21、Chen L, Huang H, Zhang W, et al. Exosomes derived from T regulatory cells suppress CD8+ cytotoxic T lymphocyte proliferation and prolong liver allograft survival[J]. Med Sci Monit, 2019, 25: 4877-4884.
Chen L, Huang H, Zhang W, et al. Exosomes derived from T regulatory cells suppress CD8+ cytotoxic T lymphocyte proliferation and prolong liver allograft survival[J]. Med Sci Monit, 2019, 25: 4877-4884.
22、Pang XL, Wang ZG, Liu L, et al. Immature dendritic cells derived exosomes promotes immune tolerance by regulating T cell differentiation in renal transplantation[J]. Aging (Albany NY), 2019, 11(20): 8911-8924.
Pang XL, Wang ZG, Liu L, et al. Immature dendritic cells derived exosomes promotes immune tolerance by regulating T cell differentiation in renal transplantation[J]. Aging (Albany NY), 2019, 11(20): 8911-8924.
23、Martínez-Carrasco R, Sánchez-Abarca LI, Nieto-Gómez C, et al. Subconjunctival injection of mesenchymal stromal cells protects the cornea in an experimental model of GVHD[J]. Ocul Surf, 2019, 17(2): 285-294.
Martínez-Carrasco R, Sánchez-Abarca LI, Nieto-Gómez C, et al. Subconjunctival injection of mesenchymal stromal cells protects the cornea in an experimental model of GVHD[J]. Ocul Surf, 2019, 17(2): 285-294.
24、Fujii S, Miura Y, Fujishiro A, et al. Graft-versus-host disease amelioration by human bone marrow mesenchymal stromal/stem cell-derived extracellular vesicles is associated with peripheral preservation of naive T cell populations[J]. Stem Cells, 2018, 36(3): 434-445.
Fujii S, Miura Y, Fujishiro A, et al. Graft-versus-host disease amelioration by human bone marrow mesenchymal stromal/stem cell-derived extracellular vesicles is associated with peripheral preservation of naive T cell populations[J]. Stem Cells, 2018, 36(3): 434-445.
25、李娟, 周颖, 谭钢, 等. 间充质干细胞外泌体治疗小鼠干眼的疗效评价[J]. 眼科新进展, 2019, 39(10): 901-905.
LI Juan, ZHOU Ying, TAN Gang, et al. Therapeutic effects of mesenchymal stem cells derived exosomes on dry eye mice[J]. Recent Adv Ophthalmol, 2019, 39(10): 901-905.
李娟, 周颖, 谭钢, 等. 间充质干细胞外泌体治疗小鼠干眼的疗效评价[J]. 眼科新进展, 2019, 39(10): 901-905.
LI Juan, ZHOU Ying, TAN Gang, et al. Therapeutic effects of mesenchymal stem cells derived exosomes on dry eye mice[J]. Recent Adv Ophthalmol, 2019, 39(10): 901-905.
26、李娜, 粘红, 赵璐, 等. 人脐带间充质干细胞来源外泌体对兔自身免疫性干眼外周血巨噬细胞的调控[J]. 中华实验眼科杂志, 2019, 37(11): 854-862.
LI Na, ZHAN Hong, ZHAO Lu, et al. Regulation of human umbilical cord mesenchymal stem cells derived exosomes on peripheral blood macrophages from rabbit autoimmune dry eye[J]. Chin J Exp Ophthalmol, 2019, 37(11):854-862.
李娜, 粘红, 赵璐, 等. 人脐带间充质干细胞来源外泌体对兔自身免疫性干眼外周血巨噬细胞的调控[J]. 中华实验眼科杂志, 2019, 37(11): 854-862.
LI Na, ZHAN Hong, ZHAO Lu, et al. Regulation of human umbilical cord mesenchymal stem cells derived exosomes on peripheral blood macrophages from rabbit autoimmune dry eye[J]. Chin J Exp Ophthalmol, 2019, 37(11):854-862.
27、Wang G, Li H, Long H, et al. Exosomes derived from mouse adipose-derived mesenchymal stem cells alleviate benzalkonium chloride-induced mouse dry eye model via inhibiting NLRP3 inflammasome[J]. Ophthalmic Res, 2022, 65(1): 40-51.
Wang G, Li H, Long H, et al. Exosomes derived from mouse adipose-derived mesenchymal stem cells alleviate benzalkonium chloride-induced mouse dry eye model via inhibiting NLRP3 inflammasome[J]. Ophthalmic Res, 2022, 65(1): 40-51.
28、Wang AL, Lukas TJ, Yuan M, et al. Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration[J]. PLoS One, 2009, 4(1): e4160.
Wang AL, Lukas TJ, Yuan M, et al. Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration[J]. PLoS One, 2009, 4(1): e4160.
29、Atienzar-Aroca S, Flores-Bellver M, Serrano-Heras G, et al. Oxidative stress in retinal pigment epithelium cells increases exosome secretion and promotes angiogenesis in endothelial cells[J]. J Cell Mol Med, 2016, 20(8): 1457-1466.
Atienzar-Aroca S, Flores-Bellver M, Serrano-Heras G, et al. Oxidative stress in retinal pigment epithelium cells increases exosome secretion and promotes angiogenesis in endothelial cells[J]. J Cell Mol Med, 2016, 20(8): 1457-1466.
30、He GH, Zhang W, Ma YX, et al. Mesenchymal stem cells-derived exosomes ameliorate blue light stimulation in retinal pigment epithelium cells and retinal laser injury by VEGF-dependent mechanism[J]. Int J Ophthalmol, 2018, 11(4): 559-566.
He GH, Zhang W, Ma YX, et al. Mesenchymal stem cells-derived exosomes ameliorate blue light stimulation in retinal pigment epithelium cells and retinal laser injury by VEGF-dependent mechanism[J]. Int J Ophthalmol, 2018, 11(4): 559-566.
31、Huang C, Fisher KP, Hammer SS, et al. Plasma exosomes contribute to microvascular damage in diabetic retinopathy by activating the classical complement pathway[J]. Diabetes, 2018, 67(8): 1639-1649.
Huang C, Fisher KP, Hammer SS, et al. Plasma exosomes contribute to microvascular damage in diabetic retinopathy by activating the classical complement pathway[J]. Diabetes, 2018, 67(8): 1639-1649.
32、Zhang W, Wang Y, Kong Y. Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1[J]. Invest Ophthalmol Vis Sci, 2019, 60(1): 294-303.
Zhang W, Wang Y, Kong Y. Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1[J]. Invest Ophthalmol Vis Sci, 2019, 60(1): 294-303.
33、Ma M, Li B, Zhang M, et al. Therapeutic effects of mesenchymal stem cell-derived exosomes on retinal detachment[J]. Exp Eye Res, 2020, 191: 107899.
Ma M, Li B, Zhang M, et al. Therapeutic effects of mesenchymal stem cell-derived exosomes on retinal detachment[J]. Exp Eye Res, 2020, 191: 107899.
34、Xu W, Wu Y, Hu Z, et al. Exosomes from microglia attenuate photoreceptor injury and neovascularization in an animal model of retinopathy of prematurity[J]. Mol Ther Nucleic Acids, 2019, 16: 778-790.
Xu W, Wu Y, Hu Z, et al. Exosomes from microglia attenuate photoreceptor injury and neovascularization in an animal model of retinopathy of prematurity[J]. Mol Ther Nucleic Acids, 2019, 16: 778-790.
35、Perkumas KM, Hoffman EA, McKay BS, et al. Myocilin-associated exosomes in human ocular samples[J]. Exp Eye Res, 2007, 84(1): 209-212.
Perkumas KM, Hoffman EA, McKay BS, et al. Myocilin-associated exosomes in human ocular samples[J]. Exp Eye Res, 2007, 84(1): 209-212.
36、Liu Y, Allingham RR, Qin X, et al. Gene expression profile in human trabecular meshwork from patients with primary open-angle glaucoma[J]. Invest Ophthalmol Vis Sci, 2013, 54(9): 6382-6389.
Liu Y, Allingham RR, Qin X, et al. Gene expression profile in human trabecular meshwork from patients with primary open-angle glaucoma[J]. Invest Ophthalmol Vis Sci, 2013, 54(9): 6382-6389.
37、Mead B, Amaral J, Tomarev S. Mesenchymal stem cell-derived small extracellular vesicles promote neuroprotection in rodent models of glaucoma[J]. Invest Ophthalmol Vis Sci, 2018, 59(2): 702-714.
Mead B, Amaral J, Tomarev S. Mesenchymal stem cell-derived small extracellular vesicles promote neuroprotection in rodent models of glaucoma[J]. Invest Ophthalmol Vis Sci, 2018, 59(2): 702-714.
38、Mead B, Tomarev S. Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through miRNA-dependent mechanisms[J]. Stem Cells Transl Med, 2017, 6(4): 1273-1285.
Mead B, Tomarev S. Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through miRNA-dependent mechanisms[J]. Stem Cells Transl Med, 2017, 6(4): 1273-1285.
39、Yu Z, Wen Y, Jiang N, et al. TNF-α stimulation enhances the neuroprotective effects of gingival MSCs derived exosomes in retinal ischemia-reperfusion injury via the MEG3/miR-21a-5p axis[J]. Biomaterials, 2022, 284: 121484.
Yu Z, Wen Y, Jiang N, et al. TNF-α stimulation enhances the neuroprotective effects of gingival MSCs derived exosomes in retinal ischemia-reperfusion injury via the MEG3/miR-21a-5p axis[J]. Biomaterials, 2022, 284: 121484.