1、Ohno-Matsui K, Kawasaki R, Jonas JB, et al. International photographic
classification and grading system for myopic maculopathy[ J]. Am J
Ophthalmol, 2015, 159(5): 877-83.e7.Ohno-Matsui K, Kawasaki R, Jonas JB, et al. International photographic
classification and grading system for myopic maculopathy[ J]. Am J
Ophthalmol, 2015, 159(5): 877-83.e7.
2、Yan YN, Wang YX, Yang Y, et al. Ten-year progression of myopic
maculopathy: the Beijing Eye Study 2001-2011[ J]. Ophthalmology,
2018, 125(8): 1253-1263.Yan YN, Wang YX, Yang Y, et al. Ten-year progression of myopic
maculopathy: the Beijing Eye Study 2001-2011[ J]. Ophthalmology,
2018, 125(8): 1253-1263.
3、Ruiz-Medrano J, Montero JA , Flores-Moreno I, et al. Myopic
maculopathy: Current status and proposal for a new classification and
grading system (ATN)[ J]. Prog Retin Eye Res, 2019, 69: 80-115.Ruiz-Medrano J, Montero JA , Flores-Moreno I, et al. Myopic
maculopathy: Current status and proposal for a new classification and
grading system (ATN)[ J]. Prog Retin Eye Res, 2019, 69: 80-115.
4、Shinohara K, Moriyama M, Shimada N, et al. Characteristics of
peripapillary staphylomas associated with high myopia determined by
swept-source optical coherence tomography[ J]. Am J Ophthalmol,
2016, 169: 138-144.Shinohara K, Moriyama M, Shimada N, et al. Characteristics of
peripapillary staphylomas associated with high myopia determined by
swept-source optical coherence tomography[ J]. Am J Ophthalmol,
2016, 169: 138-144.
5、Ohno-Matsui K, Jonas JB, et al. Posterior staphyloma in pathologic
myopia[ J]. Prog Retin Eye Res, 2019, 70: 99-109.Ohno-Matsui K, Jonas JB, et al. Posterior staphyloma in pathologic
myopia[ J]. Prog Retin Eye Res, 2019, 70: 99-109.
6、Ohno-Matsui K. Proposed classification of posterior staphylomas based
on analyses of eye shape by three-dimensional magnetic resonance
imaging and wide-field fundus imaging[ J]. Ophthalmology, 2014,
121(9): 1798-1809.Ohno-Matsui K. Proposed classification of posterior staphylomas based
on analyses of eye shape by three-dimensional magnetic resonance
imaging and wide-field fundus imaging[ J]. Ophthalmology, 2014,
121(9): 1798-1809.
7、Qiao Y, Tan C, Zhang M, et al. Comparison of spectral domain and
swept source optical coherence tomography for angle assessment of
Chinese elderly subjects[ J]. BMC Ophthalmol, 2019, 19(1): 142.Qiao Y, Tan C, Zhang M, et al. Comparison of spectral domain and
swept source optical coherence tomography for angle assessment of
Chinese elderly subjects[ J]. BMC Ophthalmol, 2019, 19(1): 142.
8、Shinohara K, Shimada N, Moriyama M, et al. Posterior staphylomas
in pathologic myopia imaged by widefield optical coherence
tomography[ J]. Invest Ophthalmol Vis Sci, 2017, 58(9): 3750-3758.Shinohara K, Shimada N, Moriyama M, et al. Posterior staphylomas
in pathologic myopia imaged by widefield optical coherence
tomography[ J]. Invest Ophthalmol Vis Sci, 2017, 58(9): 3750-3758.
9、Shinohara K, Tanaka N, Jonas JB, et al. Ultrawide-field OCT to
investigate relationships between myopic macular retinoschisis and
posterior staphyloma[ J]. Ophthalmology, 2018, 125(10): 1575-1586.Shinohara K, Tanaka N, Jonas JB, et al. Ultrawide-field OCT to
investigate relationships between myopic macular retinoschisis and
posterior staphyloma[ J]. Ophthalmology, 2018, 125(10): 1575-1586.
10、Moriyama M, Ohno-Matsui K, Hayashi K, et al. Topographic analyses
of shape of eyes with pathologic myopia by high-resolution threedimensional magnetic resonance imaging[ J]. Ophthalmology, 2011,
118(8): 1626-1637.Moriyama M, Ohno-Matsui K, Hayashi K, et al. Topographic analyses
of shape of eyes with pathologic myopia by high-resolution threedimensional magnetic resonance imaging[ J]. Ophthalmology, 2011,
118(8): 1626-1637.
11、Jonas JB, Ohno-Matsui K, Jiang WJ, et al. Bruch membrane and the
mechanism of myopization: a new theory[ J]. Retina, 2017, 37(8):
1428-1440.Jonas JB, Ohno-Matsui K, Jiang WJ, et al. Bruch membrane and the
mechanism of myopization: a new theory[ J]. Retina, 2017, 37(8):
1428-1440.
12、Jonas JB, Ohno-Matsui K, Holbach L, et al. Histology of myopic
posterior scleral staphylomas[ J]. Acta Ophthalmol, 2020, 98(7):
e856-e863.Jonas JB, Ohno-Matsui K, Holbach L, et al. Histology of myopic
posterior scleral staphylomas[ J]. Acta Ophthalmol, 2020, 98(7):
e856-e863.
13、Ohno-Matsui K, Akiba M, Modegi T, et al. Association between shape
of sclera and myopic retinochoroidal lesions in patients with pathologic
myopia[ J]. Invest Ophthalmol Vis Sci, 2012, 53(10): 6046-6061.Ohno-Matsui K, Akiba M, Modegi T, et al. Association between shape
of sclera and myopic retinochoroidal lesions in patients with pathologic
myopia[ J]. Invest Ophthalmol Vis Sci, 2012, 53(10): 6046-6061.
14、Wildsoet C, Wallman J, et al. Choroidal and scleral mechanisms of
compensation for spectacle lenses in chicks[ J]. Vision Res, 1995,
35(9): 1175-1194.Wildsoet C, Wallman J, et al. Choroidal and scleral mechanisms of
compensation for spectacle lenses in chicks[ J]. Vision Res, 1995,
35(9): 1175-1194.
15、Fledelius HC, Jacobsen N, Li XQ, et al. Choroidal thickness at age 66
years in the Danish high myopia study cohort 1948 compared with
follow-up data on visual acuity over 40 years: a clinical update adding
spectral domain optical coherence tomography[ J]. Acta Ophthalmol,
2018, 96(1): 46-50.Fledelius HC, Jacobsen N, Li XQ, et al. Choroidal thickness at age 66
years in the Danish high myopia study cohort 1948 compared with
follow-up data on visual acuity over 40 years: a clinical update adding
spectral domain optical coherence tomography[ J]. Acta Ophthalmol,
2018, 96(1): 46-50.
16、Fledelius HC, Jacobsen N, Li XQ, et al. The Longitudinal Danish
High Myopia Study, Cohort 1948: at age 66 years visual ability is only
occasionally affected by visual field defects[ J]. Acta Ophthalmol, 2019,
97(1): 36-43.Fledelius HC, Jacobsen N, Li XQ, et al. The Longitudinal Danish
High Myopia Study, Cohort 1948: at age 66 years visual ability is only
occasionally affected by visual field defects[ J]. Acta Ophthalmol, 2019,
97(1): 36-43.
17、Zhou LX, Shao L, Xu L, et al. The relationship between scleral
staphyloma and choroidal thinning in highly myopic eyes: The Beijing
Eye Study[ J]. Sci Rep, 2017, 7(1): 9825.Zhou LX, Shao L, Xu L, et al. The relationship between scleral
staphyloma and choroidal thinning in highly myopic eyes: The Beijing
Eye Study[ J]. Sci Rep, 2017, 7(1): 9825.
18、Xi LY, Yip SP, Shan SW, et al. Region-specific differential corneal and
scleral mRNA expressions of MMP2, TIMP2, and TGFB2 in highly
myopic-astigmatic chicks[ J]. Sci Rep, 2017, 7(1): 11423.Xi LY, Yip SP, Shan SW, et al. Region-specific differential corneal and
scleral mRNA expressions of MMP2, TIMP2, and TGFB2 in highly
myopic-astigmatic chicks[ J]. Sci Rep, 2017, 7(1): 11423.
19、Moriyama M, Ohno-Matsui K, Hayashi K, et al. Topographic analyses
of shape of eyes with pathologic myopia by high-resolution threedimensional magnetic resonance imaging[ J]. Ophthalmology, 2011,
118(8): 1626-1637.Moriyama M, Ohno-Matsui K, Hayashi K, et al. Topographic analyses
of shape of eyes with pathologic myopia by high-resolution threedimensional magnetic resonance imaging[ J]. Ophthalmology, 2011,
118(8): 1626-1637.
20、Wang NK, Wu YM, Wang JP, et al. Clinical characteristics of posterior
staphylomas in myopic eyes with axial length shorter than 26.5
millimeters[ J]. Am J Ophthalmol, 2016, 162: 180-190.e1.Wang NK, Wu YM, Wang JP, et al. Clinical characteristics of posterior
staphylomas in myopic eyes with axial length shorter than 26.5
millimeters[ J]. Am J Ophthalmol, 2016, 162: 180-190.e1.
21、Numa S, Yamashiro K, Wakazono T, et al. Prevalence of posterior
staphyloma and factors associated with its shape in the Japanese
population[ J]. Sci Rep, 2018, 8(1): 4594.Numa S, Yamashiro K, Wakazono T, et al. Prevalence of posterior
staphyloma and factors associated with its shape in the Japanese
population[ J]. Sci Rep, 2018, 8(1): 4594.
22、Ohno-Matsui K, Jonas JB, Spaide RF, et al. Macular bruch membrane
holes in highly myopic patchy chorioretinal atrophy[ J]. Am J
Ophthalmol, 2016, 166: 22-28.Ohno-Matsui K, Jonas JB, Spaide RF, et al. Macular bruch membrane
holes in highly myopic patchy chorioretinal atrophy[ J]. Am J
Ophthalmol, 2016, 166: 22-28.
23、Jonas JB, Holbach L, Panda-Jonas S, et al. Bruch's membrane thickness
in high myopia[ J]. Acta Ophthalmol, 2014, 92(6): e470-e474.Jonas JB, Holbach L, Panda-Jonas S, et al. Bruch's membrane thickness
in high myopia[ J]. Acta Ophthalmol, 2014, 92(6): e470-e474.
24、Parolini B, Frisina R, Pinackatt S, et al. Indications and results of a new
l-shaped macular buckle to support a posterior staphyloma in high
myopia[ J]. Retina, 2015, 35(12): 2469-2482.Parolini B, Frisina R, Pinackatt S, et al. Indications and results of a new
l-shaped macular buckle to support a posterior staphyloma in high
myopia[ J]. Retina, 2015, 35(12): 2469-2482.
25、Jonas JB, Panda-Jonas S, et al. Secondary Bruch's membrane defects and
scleral staphyloma in toxoplasmosis[ J]. Acta Ophthalmol, 2016, 94(7):
e664-e666.Jonas JB, Panda-Jonas S, et al. Secondary Bruch's membrane defects and
scleral staphyloma in toxoplasmosis[ J]. Acta Ophthalmol, 2016, 94(7):
e664-e666.
26、Wang X, Teoh CKG, Chan ASY, et al. Biomechanical properties of
bruch's membrane-choroid complex and their influence on optic
nerve head biomechanics[ J]. Invest Ophthalmol Vis Sci, 2018, 59(7):
2808-2817.Wang X, Teoh CKG, Chan ASY, et al. Biomechanical properties of
bruch's membrane-choroid complex and their influence on optic
nerve head biomechanics[ J]. Invest Ophthalmol Vis Sci, 2018, 59(7):
2808-2817.
27、Cheng YC, Shen JH, Chao AN, et al. Later development of posterior
staphyloma in choroidal osteoma with choroidal neovascularization[ J].
Retina, 2017, 37(8): e95-e96.Cheng YC, Shen JH, Chao AN, et al. Later development of posterior
staphyloma in choroidal osteoma with choroidal neovascularization[ J].
Retina, 2017, 37(8): e95-e96.
28、McBrien NA, Gentle A, et al. Role of the sclera in the development and
pathological complications of myopia[ J]. Prog Retin Eye Res, 2003,
22(3): 307-338.McBrien NA, Gentle A, et al. Role of the sclera in the development and
pathological complications of myopia[ J]. Prog Retin Eye Res, 2003,
22(3): 307-338.
29、Bhola RM, Prasad S, McCormick AG, et al. Pupillary distortion
and staphyloma follow ing trans-scleral contact diode laser
cyclophotocoagulation: a clinicopathological study of three patients[ J].
Eye (Lond), 2001, 15(Pt 4): 453-457.Bhola RM, Prasad S, McCormick AG, et al. Pupillary distortion
and staphyloma follow ing trans-scleral contact diode laser
cyclophotocoagulation: a clinicopathological study of three patients[ J].
Eye (Lond), 2001, 15(Pt 4): 453-457.
30、Morales J, Al-Shahwan S, Al-Dawoud A, et al. Scleral thinning after
transcleral diode laser cycloablation[ J]. Ophthalmic Surg Lasers
Imaging, 2007, 38(4): 301-306.Morales J, Al-Shahwan S, Al-Dawoud A, et al. Scleral thinning after
transcleral diode laser cycloablation[ J]. Ophthalmic Surg Lasers
Imaging, 2007, 38(4): 301-306.
31、Prata TS, Lima VC, Pinto LM, et al. Diode laser transscleral
cyclophotocoagulation-induced staphyloma following trabeculectomy
with mitomycin C[ J]. Ophthalmic Surg Lasers Imaging, 2008, 39(4):
343-345.Prata TS, Lima VC, Pinto LM, et al. Diode laser transscleral
cyclophotocoagulation-induced staphyloma following trabeculectomy
with mitomycin C[ J]. Ophthalmic Surg Lasers Imaging, 2008, 39(4):
343-345.
32、Yardley J, Leroy BP, Hart-Holden N, et al. Mutations of VMD2
splicing regulators cause nanophthalmos and autosomal dominant
vitreoretinochoroidopathy (ADVIRC)[ J]. Invest Ophthalmol Vis Sci,
2004, 45(10): 3683-3689.Yardley J, Leroy BP, Hart-Holden N, et al. Mutations of VMD2
splicing regulators cause nanophthalmos and autosomal dominant
vitreoretinochoroidopathy (ADVIRC)[ J]. Invest Ophthalmol Vis Sci,
2004, 45(10): 3683-3689.
33、Park JH, Choi KR , Kim CY, et al. The height of the posterior
staphyloma and corneal hysteresis is associated with the scleral
thickness at the staphyloma region in highly myopic normal-tension
glaucoma eyes[ J]. Br J Ophthalmol, 2016, 100(9): 1251-1256.Park JH, Choi KR , Kim CY, et al. The height of the posterior
staphyloma and corneal hysteresis is associated with the scleral
thickness at the staphyloma region in highly myopic normal-tension
glaucoma eyes[ J]. Br J Ophthalmol, 2016, 100(9): 1251-1256.
34、Akagi T, Nakanishi H, Yoshimura N, et al. Morphological changes
after trabeculectomy in highly myopic eyes with high intraocular
pressure by using swept-source optical coherence tomography[ J]. Am J
Ophthalmol Case Rep, 2016, 3: 54-60.Akagi T, Nakanishi H, Yoshimura N, et al. Morphological changes
after trabeculectomy in highly myopic eyes with high intraocular
pressure by using swept-source optical coherence tomography[ J]. Am J
Ophthalmol Case Rep, 2016, 3: 54-60.
35、Saka N, Moriyama M, Shimada N, et al. Changes of axial length
measured by IOL master during 2 years in eyes of adults with
pathologic myopia[ J]. Graefes Arch Clin Exp Ophthalmol, 2013,
251(2): 495-499.Saka N, Moriyama M, Shimada N, et al. Changes of axial length
measured by IOL master during 2 years in eyes of adults with
pathologic myopia[ J]. Graefes Arch Clin Exp Ophthalmol, 2013,
251(2): 495-499.
36、El-Nimri NW, Wildsoet CF, et al. Effects of topical latanoprost on
intraocular pressure and myopia progression in young guinea pigs[ J].
Invest Ophthalmol Vis Sci, 2018, 59(6): 2644-2651.El-Nimri NW, Wildsoet CF, et al. Effects of topical latanoprost on
intraocular pressure and myopia progression in young guinea pigs[ J].
Invest Ophthalmol Vis Sci, 2018, 59(6): 2644-2651.
37、Shen L, You QS, Xu X, et al. Scleral thickness in chinese eyes[ J]. Invest
Ophthalmol Vis Sci, 2015, 56(4): 2720-2727.Shen L, You QS, Xu X, et al. Scleral thickness in chinese eyes[ J]. Invest
Ophthalmol Vis Sci, 2015, 56(4): 2720-2727.
38、Mori K, Kurihara T, Uchino M, et al. High myopia and its associated
factors in JPHC-NEXT eye study: a cross-sectional observational
study[ J]. J Clin Med, 2019, 8(11): 1788.Mori K, Kurihara T, Uchino M, et al. High myopia and its associated
factors in JPHC-NEXT eye study: a cross-sectional observational
study[ J]. J Clin Med, 2019, 8(11): 1788.
39、Xu X, Fang Y, Yokoi T, et al. Posterior staphylomas in eyes with retinitis pigmentosa without high myopia[ J]. Retina, 2019, 39(7): 1299-1304.Xu X, Fang Y, Yokoi T, et al. Posterior staphylomas in eyes with retinitis pigmentosa without high myopia[ J]. Retina, 2019, 39(7): 1299-1304.
40、Cai XB, Shen SR, Chen DF, et al. An overview of myopia genetics[ J].
Exp Eye Res, 2019, 188: 107778.Cai XB, Shen SR, Chen DF, et al. An overview of myopia genetics[ J].
Exp Eye Res, 2019, 188: 107778.
41、Smirnov VM, Marks C, Drumare I, et al. Severe retinitis pigmentosa
with posterior staphyloma in a family with c.886C>A p.(Lys296Glu)
RHO mutation[ J]. Ophthalmic Genet, 2019, 40(4): 365-368.Smirnov VM, Marks C, Drumare I, et al. Severe retinitis pigmentosa
with posterior staphyloma in a family with c.886C>A p.(Lys296Glu)
RHO mutation[ J]. Ophthalmic Genet, 2019, 40(4): 365-368.
42、Michaelides M, Urquhart J, Holder GE, et al. Evidence of genetic
heterogeneity in MRCS (microcornea, rod-cone dystrophy, cataract,
and posterior staphyloma) syndrome[ J]. Am J Ophthalmol, 2006,
141(2): 418-420.Michaelides M, Urquhart J, Holder GE, et al. Evidence of genetic
heterogeneity in MRCS (microcornea, rod-cone dystrophy, cataract,
and posterior staphyloma) syndrome[ J]. Am J Ophthalmol, 2006,
141(2): 418-420.
43、Gentle A, Liu Y, Martin JE, et al. Collagen gene expression and the
altered accumulation of scleral collagen during the development of high
myopia[ J]. J Biol Chem, 2003, 278(19): 16587-16594.Gentle A, Liu Y, Martin JE, et al. Collagen gene expression and the
altered accumulation of scleral collagen during the development of high
myopia[ J]. J Biol Chem, 2003, 278(19): 16587-16594.
44、Kuniyoshi K, Sakuramoto H, Yoshitake K, et al. Longitudinal clinical
course of three Japanese patients with Leber congenital amaurosis/
early-onset retinal dystrophy with RDH12 mutation[ J]. Doc
Ophthalmol, 2014, 128(3): 219-228.Kuniyoshi K, Sakuramoto H, Yoshitake K, et al. Longitudinal clinical
course of three Japanese patients with Leber congenital amaurosis/
early-onset retinal dystrophy with RDH12 mutation[ J]. Doc
Ophthalmol, 2014, 128(3): 219-228.
45、Zhu SQ, Pan AP, Zheng LY, et al. Posterior scleral reinforcement using
genipin-cross-linked sclera for macular hole retinal detachment in
highly myopic eyes[ J]. Br J Ophthalmol, 2018, 102(12): 1701-1704.Zhu SQ, Pan AP, Zheng LY, et al. Posterior scleral reinforcement using
genipin-cross-linked sclera for macular hole retinal detachment in
highly myopic eyes[ J]. Br J Ophthalmol, 2018, 102(12): 1701-1704.
46、Li XJ, Yang XP, Li QM, et al. Posterior scleral reinforcement for the
treatment of pathological myopia[ J]. Int J Ophthalmol, 2016, 9(4):
580-584.Li XJ, Yang XP, Li QM, et al. Posterior scleral reinforcement for the
treatment of pathological myopia[ J]. Int J Ophthalmol, 2016, 9(4):
580-584.
47、Frisina R. A customized posterior scleral reinforcement for myopic
macular hole with retinal detachment and posterior staphyloma: a case
report[ J/OL]. Eur J Ophthalmol, 2020, Epub ahead of print.Frisina R. A customized posterior scleral reinforcement for myopic
macular hole with retinal detachment and posterior staphyloma: a case
report[ J/OL]. Eur J Ophthalmol, 2020, Epub ahead of print.
48、Xue A, Zheng L, Tan G, et al. Genipin-crosslinked donor sclera for
posterior scleral contraction/reinforcement to fight progressive
myopia[ J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3564-3573.Xue A, Zheng L, Tan G, et al. Genipin-crosslinked donor sclera for
posterior scleral contraction/reinforcement to fight progressive
myopia[ J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3564-3573.
49、Su Y, Pan A, Wu Y, et al. The efficacy of posterior scleral contraction in
controlling high myopia in young people[ J]. Am J Transl Res, 2018,
10(11): 3628-3634.Su Y, Pan A, Wu Y, et al. The efficacy of posterior scleral contraction in
controlling high myopia in young people[ J]. Am J Transl Res, 2018,
10(11): 3628-3634.
50、Peng C, Xu J, Ding X, et al. Effects of posterior scleral reinforcement in
pathological myopia: a 3-year follow-up study[ J]. Graefes Arch Clin
Exp Ophthalmol, 2019, 257(3): 607-617.Peng C, Xu J, Ding X, et al. Effects of posterior scleral reinforcement in
pathological myopia: a 3-year follow-up study[ J]. Graefes Arch Clin
Exp Ophthalmol, 2019, 257(3): 607-617.
51、Theodossiadis GP, Theodossiadis PG, et al. The macular buckling
procedure in the treatment of retinal detachment in highly myopic eyes
with macular hole and posterior staphyloma: mean follow-up of 15
years[ J]. Retina, 2005, 25(3): 285-289.Theodossiadis GP, Theodossiadis PG, et al. The macular buckling
procedure in the treatment of retinal detachment in highly myopic eyes
with macular hole and posterior staphyloma: mean follow-up of 15
years[ J]. Retina, 2005, 25(3): 285-289.
52、Han D, He MN, Zhu Y, et al. Protective effects of riboflavin-UVAmediated posterior sclera collagen cross-linking in a guinea pig model
of form-deprived myopia[ J]. Int J Ophthalmol, 2021, 14(3): 333-340.Han D, He MN, Zhu Y, et al. Protective effects of riboflavin-UVAmediated posterior sclera collagen cross-linking in a guinea pig model
of form-deprived myopia[ J]. Int J Ophthalmol, 2021, 14(3): 333-340.
53、Rong S, Wang C, Han B, et al. Iontophoresis-assisted accelerated
riboflavin/ultraviolet A scleral cross-linking: a potential treatment for
pathologic myopia[ J]. Exp Eye Res, 2017, 162: 37-47.Rong S, Wang C, Han B, et al. Iontophoresis-assisted accelerated
riboflavin/ultraviolet A scleral cross-linking: a potential treatment for
pathologic myopia[ J]. Exp Eye Res, 2017, 162: 37-47.
54、Karl A, Makarov FN, Koch C, et al. The ultrastructure of rabbit sclera
after scleral crosslinking with riboflavin and blue light of different
intensities[ J]. Graefes Arch Clin Exp Ophthalmol, 2016, 254(8):
1567-1577.Karl A, Makarov FN, Koch C, et al. The ultrastructure of rabbit sclera
after scleral crosslinking with riboflavin and blue light of different
intensities[ J]. Graefes Arch Clin Exp Ophthalmol, 2016, 254(8):
1567-1577.
55、Zyablitskaya M, Takaoka A, Munteanu EL, et al. Evaluation of
therapeutic tissue crosslinking (TXL) for myopia using second
harmonic generation signal microscopy in rabbit sclera[ J]. Invest
Ophthalmol Vis Sci, 2017, 58(1): 21-29.Zyablitskaya M, Takaoka A, Munteanu EL, et al. Evaluation of
therapeutic tissue crosslinking (TXL) for myopia using second
harmonic generation signal microscopy in rabbit sclera[ J]. Invest
Ophthalmol Vis Sci, 2017, 58(1): 21-29.
56、Shinohara K, Yoshida T, Liu H, et al. Establishment of novel therapy
to reduce progression of myopia in rats with experimental myopia by
fibroblast transplantation on sclera[ J]. J Tissue Eng Regen Med, 2018,
12(1): e451-e461.Shinohara K, Yoshida T, Liu H, et al. Establishment of novel therapy
to reduce progression of myopia in rats with experimental myopia by
fibroblast transplantation on sclera[ J]. J Tissue Eng Regen Med, 2018,
12(1): e451-e461.