1、Li H, Yang Y, Hong W, et al. Applications of genome editing technology
in the targeted therapy of human diseases: mechanisms, advances and
prospects[ J]. Signal Transduct Target Ther, 2020, 5(1): 1.Li H, Yang Y, Hong W, et al. Applications of genome editing technology
in the targeted therapy of human diseases: mechanisms, advances and
prospects[ J]. Signal Transduct Target Ther, 2020, 5(1): 1.
2、Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNAguided DNA endonuclease in adaptive bacterial immunity[ J]. Science,
2012, 337(6096): 816-821.Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNAguided DNA endonuclease in adaptive bacterial immunity[ J]. Science,
2012, 337(6096): 816-821.
3、Balaggan KS, Ali RR. Ocular gene delivery using lentiviral vectors[ J].
Gene Ther, 2012, 19(2): 145-153.Balaggan KS, Ali RR. Ocular gene delivery using lentiviral vectors[ J].
Gene Ther, 2012, 19(2): 145-153.
4、张燕宇, 高欣, 江宽, 等. 眼部疾病的基因治疗与递送策略[ J]. 药
学学报, 2018, 54(4): 518-528.
ZHANG Y, GAO X, JIANG K, et al. Gene therapy and
delivery strategies for ocular disease[ J]. Acta Pharmaceutica Sinica,
2018, 54(4): 518-528.张燕宇, 高欣, 江宽, 等. 眼部疾病的基因治疗与递送策略[ J]. 药
学学报, 2018, 54(4): 518-528.
ZHANG Y, GAO X, JIANG K, et al. Gene therapy and
delivery strategies for ocular disease[ J]. Acta Pharmaceutica Sinica,
2018, 54(4): 518-528.
5、Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the
iap gene, responsible for alkaline phosphatase isozyme conversion in
Escherichia coli, and identification of the gene product[ J]. J Bacteriol,
1987, 169(12): 5429-5433.Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the
iap gene, responsible for alkaline phosphatase isozyme conversion in
Escherichia coli, and identification of the gene product[ J]. J Bacteriol,
1987, 169(12): 5429-5433.
6、Hille F, Richter H, Wong SP, et al. The biology of CRISPR-Cas:
backward and forward[ J]. Cell, 2018, 172(6): 1239-1259.Hille F, Richter H, Wong SP, et al. The biology of CRISPR-Cas:
backward and forward[ J]. Cell, 2018, 172(6): 1239-1259.
7、Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation
by trans-encoded small RNA and host factor RNase III[ J]. Nature,
2011, 471(7340): 602-607.Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation
by trans-encoded small RNA and host factor RNase III[ J]. Nature,
2011, 471(7340): 602-607.
8、Wyman C, Kanaar R. DNA double-strand break repair: all's well that
ends well[ J]. Annu Rev Genet, 2006, 40: 363-383.Wyman C, Kanaar R. DNA double-strand break repair: all's well that
ends well[ J]. Annu Rev Genet, 2006, 40: 363-383.
9、Wang T, Wei JJ, Sabatini DM, et al. Genetic screens in human cells
using the CRISPR-Cas9 system[ J]. Science, 2014, 343(6166): 80-84.Wang T, Wei JJ, Sabatini DM, et al. Genetic screens in human cells
using the CRISPR-Cas9 system[ J]. Science, 2014, 343(6166): 80-84.
10、Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPRCas9 knockout screening in human cells[ J]. Science, 2014, 343(6166):
84-87.Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPRCas9 knockout screening in human cells[ J]. Science, 2014, 343(6166):
84-87.
11、Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using
CRISPR/Cas systems[ J]. Science, 2013, 339(6121): 819-823.Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using
CRISPR/Cas systems[ J]. Science, 2013, 339(6121): 819-823.
12、Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome
engineering via Cas9[ J]. Science, 2013, 339(6121): 823-826.Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome
engineering via Cas9[ J]. Science, 2013, 339(6121): 823-826.
13、Mani RS, Chinnaiyan AM. Triggers for genomic rearrangements:
insights into genomic, cellular and environmental influences[ J]. Nat
Rev Genet, 2010, 11(12): 819-829.Mani RS, Chinnaiyan AM. Triggers for genomic rearrangements:
insights into genomic, cellular and environmental influences[ J]. Nat
Rev Genet, 2010, 11(12): 819-829.
14、Yeh CD, Richardson CD, Corn JE, et al. Advances in genome editing
through control of DNA repair pathways[ J]. Nat Cell Biol, 2019,
21(12): 1468-1478.Yeh CD, Richardson CD, Corn JE, et al. Advances in genome editing
through control of DNA repair pathways[ J]. Nat Cell Biol, 2019,
21(12): 1468-1478.
15、Richardson CD, Kazane KR, Feng SJ, et al. CRISPR-Cas9 genome
editing in human cells occurs via the Fanconi anemia pathway[ J]. Nat
Genet, 2018, 50(8): 1132-1139.Richardson CD, Kazane KR, Feng SJ, et al. CRISPR-Cas9 genome
editing in human cells occurs via the Fanconi anemia pathway[ J]. Nat
Genet, 2018, 50(8): 1132-1139.
16、Chang B, Khanna H, Hawes N, et al. In-frame deletion in a novel
centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction
with RPGR and results in early-onset retinal degeneration in the rd16
mouse[ J]. Hum Mol Genet, 2006, 15(11): 1847-1857.Chang B, Khanna H, Hawes N, et al. In-frame deletion in a novel
centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction
with RPGR and results in early-onset retinal degeneration in the rd16
mouse[ J]. Hum Mol Genet, 2006, 15(11): 1847-1857.
17、Stone EM. Leber congenital amaurosis - a model for efficient genetic
testing of heterogeneous disorders: LXIV Edward Jackson Memorial
Lecture[ J]. Am J Ophthalmol, 2007, 144(6): 791-811.Stone EM. Leber congenital amaurosis - a model for efficient genetic
testing of heterogeneous disorders: LXIV Edward Jackson Memorial
Lecture[ J]. Am J Ophthalmol, 2007, 144(6): 791-811.
18、den Hollander AI, Koenekoop RK, Yzer S, et al. Mutations in the
CEP290 (NPHP6) gene are a frequent cause of Leber congenital
amaurosis[ J]. Am J Hum Genet, 2006, 79(3): 556-561.den Hollander AI, Koenekoop RK, Yzer S, et al. Mutations in the
CEP290 (NPHP6) gene are a frequent cause of Leber congenital
amaurosis[ J]. Am J Hum Genet, 2006, 79(3): 556-561.
19、Collin RW, den Hollander AI, van der Velde-Visser SD, et al. Antisense
oligonucleotide (AON)-based therapy for Leber congenital amaurosis
caused by a frequent mutation in CEP290[ J]. Mol Ther Nucleic Acids,
2012, 1: e14.Collin RW, den Hollander AI, van der Velde-Visser SD, et al. Antisense
oligonucleotide (AON)-based therapy for Leber congenital amaurosis
caused by a frequent mutation in CEP290[ J]. Mol Ther Nucleic Acids,
2012, 1: e14.
20、Maeder ML, Stefanidakis M, Wilson CJ, et al. Development of a geneediting approach to restore vision loss in Leber congenital amaurosis
type 10[ J]. Nat Med, 2019, 25(2): 229-233.Maeder ML, Stefanidakis M, Wilson CJ, et al. Development of a geneediting approach to restore vision loss in Leber congenital amaurosis
type 10[ J]. Nat Med, 2019, 25(2): 229-233.
21、First CRISPR therapy dosed[ J]. Nat Biotechnol, 2020, 38(4): 382.First CRISPR therapy dosed[ J]. Nat Biotechnol, 2020, 38(4): 382.
22、McGee TL, Seyedahmadi BJ, Sweeney MO, et al. Novel mutations in
the long isoform of the USH2A gene in patients with Usher syndrome
type II or non-syndromic retinitis pigmentosa[ J]. J Med Genet, 2010,
47(7): 499-506.McGee TL, Seyedahmadi BJ, Sweeney MO, et al. Novel mutations in
the long isoform of the USH2A gene in patients with Usher syndrome
type II or non-syndromic retinitis pigmentosa[ J]. J Med Genet, 2010,
47(7): 499-506.
23、Liu X, Bulgakov OV, Darrow KN, et al. Usherin is required for
maintenance of retinal photoreceptors and normal development
of cochlear hair cells[ J]. Proc Natl Acad Sci U S A, 2007, 104(11):
4413-4418.Liu X, Bulgakov OV, Darrow KN, et al. Usherin is required for
maintenance of retinal photoreceptors and normal development
of cochlear hair cells[ J]. Proc Natl Acad Sci U S A, 2007, 104(11):
4413-4418.
24、Mukherjee S, Mehta A, Ciulla D, et al. In vivo proof of concept for
EDIT-102: a CRISPR/Cas9-based experimental medicine for USH2Arelated inherited retinal degeneration caused by mutations in exon
13[R]. Boston: American Society of Gene & Cell Therapy (ASGCT)
23rd Annual Meeting, 2020.Mukherjee S, Mehta A, Ciulla D, et al. In vivo proof of concept for
EDIT-102: a CRISPR/Cas9-based experimental medicine for USH2Arelated inherited retinal degeneration caused by mutations in exon
13[R]. Boston: American Society of Gene & Cell Therapy (ASGCT)
23rd Annual Meeting, 2020.
25、Koganti R, Yadavalli T, Shukla D, et al. Current and emerging therapies
for ocular herpes simplex virus type-1 infections[ J]. Microorganisms,
2019, 7(10): 429.Koganti R, Yadavalli T, Shukla D, et al. Current and emerging therapies
for ocular herpes simplex virus type-1 infections[ J]. Microorganisms,
2019, 7(10): 429.
26、Farooq AV, Shukla D. Corneal latency and transmission of herpes
simplex virus-1[ J]. Future Virol, 2011, 6(1): 101-108.Farooq AV, Shukla D. Corneal latency and transmission of herpes
simplex virus-1[ J]. Future Virol, 2011, 6(1): 101-108.
27、Shen S, Owens CM, Chao H, et al. Treatment of herpetic keratitis with
CRISPR/Cas9 gene editing in a rabbit disease model[R]. Chicago:
American Society of Gene & Cell Therapy (ASGCT) 21st Annual
Meeting, 2018.Shen S, Owens CM, Chao H, et al. Treatment of herpetic keratitis with
CRISPR/Cas9 gene editing in a rabbit disease model[R]. Chicago:
American Society of Gene & Cell Therapy (ASGCT) 21st Annual
Meeting, 2018.
28、Ferrari S, Di Iorio E, Barbaro V, et al. Retinitis pigmentosa: genes and
disease mechanisms[ J]. Curr Genomics, 2011, 12(4): 238-249.Ferrari S, Di Iorio E, Barbaro V, et al. Retinitis pigmentosa: genes and
disease mechanisms[ J]. Curr Genomics, 2011, 12(4): 238-249.
29、Diakatou M, Manes G, Bocquet B, et al. Genome editing as a treatment
for the most prevalent causative genes of autosomal dominant retinitis
pigmentosa[ J]. Int J Mol Sci, 2019, 20(10): 2542.Diakatou M, Manes G, Bocquet B, et al. Genome editing as a treatment
for the most prevalent causative genes of autosomal dominant retinitis
pigmentosa[ J]. Int J Mol Sci, 2019, 20(10): 2542.
30、Wilson JH, Wensel TG. The nature of dominant mutations of rhodopsin
and implications for gene therapy[ J]. Mol Neurobiol, 2003, 28(2):
149-158.Wilson JH, Wensel TG. The nature of dominant mutations of rhodopsin
and implications for gene therapy[ J]. Mol Neurobiol, 2003, 28(2):
149-158.
31、Mendes HF, van der Spuy J, Chapple JP, et al. Mechanisms of cell death
in rhodopsin retinitis pigmentosa: implications for therapy[ J]. Trends
Mol Med, 2005, 11(4): 177-185.Mendes HF, van der Spuy J, Chapple JP, et al. Mechanisms of cell death
in rhodopsin retinitis pigmentosa: implications for therapy[ J]. Trends
Mol Med, 2005, 11(4): 177-185.
32、Giannelli SG, Luoni M, Castoldi V, et al. Cas9/sgRNA selective
targeting of the P23H Rhodopsin mutant allele for treating retinitis
pigmentosa by intravitreal AAV9.PHP.B-based delivery[ J]. Hum Mol
Genet, 2018, 27(5): 761-779.Giannelli SG, Luoni M, Castoldi V, et al. Cas9/sgRNA selective
targeting of the P23H Rhodopsin mutant allele for treating retinitis
pigmentosa by intravitreal AAV9.PHP.B-based delivery[ J]. Hum Mol
Genet, 2018, 27(5): 761-779.
33、Kosicki M, Tomberg K, Bradley A, et al. Repair of double-strand
breaks induced by CRISPR-Cas9 leads to large deletions and complex
rearrangements[ J]. Nat Biotechnol, 2018, 36(8): 765-771.Kosicki M, Tomberg K, Bradley A, et al. Repair of double-strand
breaks induced by CRISPR-Cas9 leads to large deletions and complex
rearrangements[ J]. Nat Biotechnol, 2018, 36(8): 765-771.
34、Allen F, Crepaldi L, Alsinet C, et al. Predicting the mutations generated
by repair of Cas9-induced double-strand breaks[ J]. Nat Biotechnol,
2018, [Epub ahead of print].Allen F, Crepaldi L, Alsinet C, et al. Predicting the mutations generated
by repair of Cas9-induced double-strand breaks[ J]. Nat Biotechnol,
2018, [Epub ahead of print].
35、Rothkamm K, Krüger I, Thompson LH, et al. Pathways of DNA
double-strand break repair during the mammalian cell cycle[ J]. Mol
Cell Biol, 2003, 23(16): 5706-5715.Rothkamm K, Krüger I, Thompson LH, et al. Pathways of DNA
double-strand break repair during the mammalian cell cycle[ J]. Mol
Cell Biol, 2003, 23(16): 5706-5715.
36、Cox DB, Platt RJ, Zhang F, et al. Therapeutic genome editing: prospects
and challenges[ J]. Nat Med, 2015, 21(2): 121-131.Cox DB, Platt RJ, Zhang F, et al. Therapeutic genome editing: prospects
and challenges[ J]. Nat Med, 2015, 21(2): 121-131.
37、Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target
base in genomic DNA without double-stranded DNA cleavage[ J].
Nature, 2016, 533(7603): 420-424.Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target
base in genomic DNA without double-stranded DNA cleavage[ J].
Nature, 2016, 533(7603): 420-424.
38、Nishida K, Arazoe T, Yachie N, et al. Targeted nucleotide editing
using hybrid prokaryotic and vertebrate adaptive immune systems[ J].
Science, 2016,Nishida K, Arazoe T, Yachie N, et al. Targeted nucleotide editing
using hybrid prokaryotic and vertebrate adaptive immune systems[ J].
Science, 2016,
39、Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing
of A?T to G?C in genomic DNA without DNA cleavage[ J]. Nature,
2017, 551(7681): 464-471.Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing
of A?T to G?C in genomic DNA without DNA cleavage[ J]. Nature,
2017, 551(7681): 464-471.
40、Kurt IC, Zhou R, Iyer S, et al. CRISPR C-to-G base editors for inducing
targeted DNA transversions in human cells[ J]. Nat Biotechnol, 2021,
39(1): 41-46.Kurt IC, Zhou R, Iyer S, et al. CRISPR C-to-G base editors for inducing
targeted DNA transversions in human cells[ J]. Nat Biotechnol, 2021,
39(1): 41-46.
41、Yeh WH, Chiang H, Rees HA, et al. In vivo base editing of post-mitotic
sensory cells[ J]. Nat Commun, 2018, 9(1): 2184.Yeh WH, Chiang H, Rees HA, et al. In vivo base editing of post-mitotic
sensory cells[ J]. Nat Commun, 2018, 9(1): 2184.
42、Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome
editing without double-strand breaks or donor DNA[ J]. Nature, 2019,
576(7785): 149-157.Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome
editing without double-strand breaks or donor DNA[ J]. Nature, 2019,
576(7785): 149-157.
43、Strecker J, Ladha A, Gardner Z, et al. RNA-guided DNA insertion with
CRISPR-associated transposases[ J]. Science, 2019, 365(6448): 48-53.Strecker J, Ladha A, Gardner Z, et al. RNA-guided DNA insertion with
CRISPR-associated transposases[ J]. Science, 2019, 365(6448): 48-53.
44、Klompe SE, Vo PLH, Halpin-Healy TS, et al. Transposon-encoded
CRISPR-Cas systems direct RNA-guided DNA integration[ J]. Nature,
2019, 571(7764): 219-225.Klompe SE, Vo PLH, Halpin-Healy TS, et al. Transposon-encoded
CRISPR-Cas systems direct RNA-guided DNA integration[ J]. Nature,
2019, 571(7764): 219-225.
45、Kajiwara K, Hahn LB, Mukai S, et al. Mutations in the human retinal
degeneration slow gene in autosomal dominant retinitis pigmentosa[ J].
Nature, 1991, 354(6353): 480-483.Kajiwara K, Hahn LB, Mukai S, et al. Mutations in the human retinal
degeneration slow gene in autosomal dominant retinitis pigmentosa[ J].
Nature, 1991, 354(6353): 480-483.
46、Perrault I, Delphin N, Hanein S, et al. Spectrum of NPHP6/CEP290
mutations in Leber congenital amaurosis and delineation of the
associated phenotype[ J]. Hum Mutat, 2007, 28(4): 416.Perrault I, Delphin N, Hanein S, et al. Spectrum of NPHP6/CEP290
mutations in Leber congenital amaurosis and delineation of the
associated phenotype[ J]. Hum Mutat, 2007, 28(4): 416.
47、Kuivenhoven JA, Weibusch H, Pritchard PH, et al. An intronic mutation
in a lariat branchpoint sequence is a direct cause of an inherited human
disorder (fish-eye disease)[ J]. J Clin Invest, 1996, 98(2): 358-364.Kuivenhoven JA, Weibusch H, Pritchard PH, et al. An intronic mutation
in a lariat branchpoint sequence is a direct cause of an inherited human
disorder (fish-eye disease)[ J]. J Clin Invest, 1996, 98(2): 358-364.