1、Baird PN, Saw SM, Lanca C, et al. Myopia[ J]. Nat Rev Dis Primers,
2020, 6(1): 99.Baird PN, Saw SM, Lanca C, et al. Myopia[ J]. Nat Rev Dis Primers,
2020, 6(1): 99.
2、Modjtahedi BS, Ferris FL 3rd, Hunter DG, et al. Public health burden
and potential interventions for myopia[ J]. Ophthalmology, 2018,
125(5): 628-630.Modjtahedi BS, Ferris FL 3rd, Hunter DG, et al. Public health burden
and potential interventions for myopia[ J]. Ophthalmology, 2018,
125(5): 628-630.
3、Dolgin E. The myopia boom[ J]. Nature, 2015, 519(7543): 276-278.Dolgin E. The myopia boom[ J]. Nature, 2015, 519(7543): 276-278.
4、Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia
and high myopia and temporal trends from 2000 through 2050[ J].
Ophthalmology, 2016, 123(5): 1036-1042.Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia
and high myopia and temporal trends from 2000 through 2050[ J].
Ophthalmology, 2016, 123(5): 1036-1042.
5、国家卫生健康委宣传司. 国家卫生健康委员会2021年7月13
日新闻发布会文字实录[EB/OL]. [2021-07-13]. [2021-07-29].
http://www.nhc.gov.cn/xcs/s3574/202107/2fef24a3b77246fc9fb36d
c8943af700.shtml
Department of Publicity, National Health Commission. Transcript of
press Conference held by National Health Commission on July 13,
2021[EB/OL]. [2021-07-13]. [2021-07-29]. http://www.nhc.gov.cn/
xcs/s3574/202107/2fef24a3b77246fc9fb36dc8943af700.shtml国家卫生健康委宣传司. 国家卫生健康委员会2021年7月13
日新闻发布会文字实录[EB/OL]. [2021-07-13]. [2021-07-29].
http://www.nhc.gov.cn/xcs/s3574/202107/2fef24a3b77246fc9fb36d
c8943af700.shtml
Department of Publicity, National Health Commission. Transcript of
press Conference held by National Health Commission on July 13,
2021[EB/OL]. [2021-07-13]. [2021-07-29]. http://www.nhc.gov.cn/
xcs/s3574/202107/2fef24a3b77246fc9fb36dc8943af700.shtml
6、Yu KH, Beam AL, Kohane IS, et al. Artificial intelligence in healthcare[ J]. Nat Biomed Eng, 2018, 2(10): 719-731.Yu KH, Beam AL, Kohane IS, et al. Artificial intelligence in healthcare[ J]. Nat Biomed Eng, 2018, 2(10): 719-731.
7、王晓刚, 王晓亮, 董静. 眼科人工智能应用研究进展[ J]. 中华眼
外伤职业眼病杂志, 2020, 42(11): 876-880.
WANG Xiaogang, WANG Xiaoliang, DONG Jing. Advances in the
application of artificial intelligence in ophthalmology[ J]. Chinese
Journal of Ocular Trauma and Occupational Eye Disease, 2020, 42(11):
876-880.王晓刚, 王晓亮, 董静. 眼科人工智能应用研究进展[ J]. 中华眼
外伤职业眼病杂志, 2020, 42(11): 876-880.
WANG Xiaogang, WANG Xiaoliang, DONG Jing. Advances in the
application of artificial intelligence in ophthalmology[ J]. Chinese
Journal of Ocular Trauma and Occupational Eye Disease, 2020, 42(11):
876-880.
8、Xu X, Zhang L, Li J, et al. A hybrid global-local representation CNN
model for automatic cataract grading[ J]. IEEE J Biomed Health Inform,
2020, 24(2): 556-567.Xu X, Zhang L, Li J, et al. A hybrid global-local representation CNN
model for automatic cataract grading[ J]. IEEE J Biomed Health Inform,
2020, 24(2): 556-567.
9、Kim KE, Kim JM, Song JE, et al. Development and validation of a
deep learning system for diagnosing glaucoma using optical coherence
tomography[ J]. J Clin Med, 2020, 9(7): 2167.Kim KE, Kim JM, Song JE, et al. Development and validation of a
deep learning system for diagnosing glaucoma using optical coherence
tomography[ J]. J Clin Med, 2020, 9(7): 2167.
10、Gargeya R, Leng T. Automated identification of diabetic retinopathy
using deep learning[ J]. Ophthalmology, 2017, 124(7): 962-969.Gargeya R, Leng T. Automated identification of diabetic retinopathy
using deep learning[ J]. Ophthalmology, 2017, 124(7): 962-969.
11、Hwang DK, Hsu CC, Chang KJ, et al. Artificial intelligence-based
decision-making for age-related macular degeneration[ J]. Theranostics,
2019, 9(1): 232-245.Hwang DK, Hsu CC, Chang KJ, et al. Artificial intelligence-based
decision-making for age-related macular degeneration[ J]. Theranostics,
2019, 9(1): 232-245.
12、Campbell JP, Kim SJ, Brown JM, et al. Evaluation of a deep learningderived quantitative retinopathy of prematurity severity scale[ J].
Ophthalmology, 2021, 128(7): 1070-1076.Campbell JP, Kim SJ, Brown JM, et al. Evaluation of a deep learningderived quantitative retinopathy of prematurity severity scale[ J].
Ophthalmology, 2021, 128(7): 1070-1076.
13、徐捷, 徐亮. 近视防控的六维度评估及防控模式[ J]. 中华眼视光
学与视觉科学杂志, 2018, 20(3): 129-132.
XU Jie, XU Liang. Six-dimensional evaluation for myopia prevention
and control[ J]. Chinese Journal of Optometry Ophthalmology and
Visual Science, 2018, 20(3): 129-132.徐捷, 徐亮. 近视防控的六维度评估及防控模式[ J]. 中华眼视光
学与视觉科学杂志, 2018, 20(3): 129-132.
XU Jie, XU Liang. Six-dimensional evaluation for myopia prevention
and control[ J]. Chinese Journal of Optometry Ophthalmology and
Visual Science, 2018, 20(3): 129-132.
14、Lin S, Ma Y, He X, et al. Using decision curve analysis to evaluate
common strategies for myopia screening in school-aged children[ J].
Ophthalmic Epidemiol, 2019, 26(4): 286-294.Lin S, Ma Y, He X, et al. Using decision curve analysis to evaluate
common strategies for myopia screening in school-aged children[ J].
Ophthalmic Epidemiol, 2019, 26(4): 286-294.
15、林浩添, 林铎儒. 我国未成年人视觉损害人工智能诊疗研究的
现状和建议[ J]. 中国临床新医学, 2020, 13(2): 111-114.
LIN Haotian, LIN Duoru. Current situation and suggestion of the
research on artificial intelligence diagnosis and treatment of visual
impairment of minors in China[ J]. Chinese Journal of New Clinical
Medicine, 2020, 13(2): 111-114.林浩添, 林铎儒. 我国未成年人视觉损害人工智能诊疗研究的
现状和建议[ J]. 中国临床新医学, 2020, 13(2): 111-114.
LIN Haotian, LIN Duoru. Current situation and suggestion of the
research on artificial intelligence diagnosis and treatment of visual
impairment of minors in China[ J]. Chinese Journal of New Clinical
Medicine, 2020, 13(2): 111-114.
16、Yang Y, Li R, Lin D, et al. Automatic identification of myopia based on
ocular appearance images using deep learning[ J]. Ann Transl Med,
2020, 8(11): 705.Yang Y, Li R, Lin D, et al. Automatic identification of myopia based on
ocular appearance images using deep learning[ J]. Ann Transl Med,
2020, 8(11): 705.
17、Yamada T, Hatt SR, Leske DA, et al. A new computer-based pediatric
vision-screening test[ J]. J AAPOS, 2015, 19(2): 157-162.Yamada T, Hatt SR, Leske DA, et al. A new computer-based pediatric
vision-screening test[ J]. J AAPOS, 2015, 19(2): 157-162.
18、Rosenfield M, Ciuffreda KJ. Evaluation of the SVOne handheld
autorefractor in a pediatric population[ J]. Optom Vis Sci, 2017, 94(2):
159-165.Rosenfield M, Ciuffreda KJ. Evaluation of the SVOne handheld
autorefractor in a pediatric population[ J]. Optom Vis Sci, 2017, 94(2):
159-165.
19、Lin H, Long E, Ding X, et al. Prediction of myopia development among
Chinese school-aged children using refraction data from electronic
medical records: A retrospective, multicentre machine learning
study[ J]. PLoS Med, 2018, 15(11): e1002674.Lin H, Long E, Ding X, et al. Prediction of myopia development among
Chinese school-aged children using refraction data from electronic
medical records: A retrospective, multicentre machine learning
study[ J]. PLoS Med, 2018, 15(11): e1002674.
20、Yang X, Chen G, Qian Y, et al. Prediction of myopia in adolescents
through machine learning methods[ J]. Int J Environ Res Public Health,
2020, 17(2): 463.Yang X, Chen G, Qian Y, et al. Prediction of myopia in adolescents
through machine learning methods[ J]. Int J Environ Res Public Health,
2020, 17(2): 463.
21、唐涛, 范玉琢, 徐琼, 等. 机器学习对青少年近视眼轴增长与近
视度数增加关联性的预测作用[ J]. 中华实验眼科杂志, 2020,
38(2): 134-139.
TANG Tao, FAN Yuzhuo, XU Qiong, et al. A study of the predictive
effects of machine learning for the relationship between axial
length elongation and the progression of myopia in school-aged
children[ J]. Chinese Journal of Experimental Ophthalmology,
2020, 38(2): 134-139.唐涛, 范玉琢, 徐琼, 等. 机器学习对青少年近视眼轴增长与近
视度数增加关联性的预测作用[ J]. 中华实验眼科杂志, 2020,
38(2): 134-139.
TANG Tao, FAN Yuzhuo, XU Qiong, et al. A study of the predictive
effects of machine learning for the relationship between axial
length elongation and the progression of myopia in school-aged
children[ J]. Chinese Journal of Experimental Ophthalmology,
2020, 38(2): 134-139.
22、Varadarajan AV, Poplin R, Blumer K, et al. Deep learning for predicting
refractive error from retinal fundus images[ J]. Invest Ophthalmol Vis
Sci, 2018, 59(7): 2861-2868.Varadarajan AV, Poplin R, Blumer K, et al. Deep learning for predicting
refractive error from retinal fundus images[ J]. Invest Ophthalmol Vis
Sci, 2018, 59(7): 2861-2868.
23、温龙波, 蓝卫忠, 李晓柠, 等. 客观监测近视眼相关环境因素的新
设备“云夹”的准确性和稳定性研究[ J]. 中华眼视光学与视觉科
学杂志, 2017, 19(4): 198-203.
WEN Longbo, LAN Weizhong, LI Xiaoning, et al. Accuracy and
stability of ClouclipTM, a novel device to record myopic environmental
risks[ J]. Chinese Journal of Optometry Ophthalmology and Visual
Science, 2017, 19(4): 198-203.温龙波, 蓝卫忠, 李晓柠, 等. 客观监测近视眼相关环境因素的新
设备“云夹”的准确性和稳定性研究[ J]. 中华眼视光学与视觉科
学杂志, 2017, 19(4): 198-203.
WEN Longbo, LAN Weizhong, LI Xiaoning, et al. Accuracy and
stability of ClouclipTM, a novel device to record myopic environmental
risks[ J]. Chinese Journal of Optometry Ophthalmology and Visual
Science, 2017, 19(4): 198-203.
24、Cao Y, Lan W, Wen L, et al. An effectiveness study of a wearable device
(Clouclip) intervention in unhealthy visual behaviors among schoolage children: A pilot study[ J]. Medicine (Baltimore), 2020, 99(2):
e17992.Cao Y, Lan W, Wen L, et al. An effectiveness study of a wearable device
(Clouclip) intervention in unhealthy visual behaviors among schoolage children: A pilot study[ J]. Medicine (Baltimore), 2020, 99(2):
e17992.
25、居玲, 张常春, 韩香香, 等. 一种基于人工智能的防控近视眼应用
软件[ J]. 中国科技信息, 2020(13): 83-84.
JU Ling, ZHANG Changchun, HAN Xiangxiang, et al. An application
software for prevention and control of myopia based on artificial
intelligence[ J]. China Science and Technology Information, 2020(13):
83-84.居玲, 张常春, 韩香香, 等. 一种基于人工智能的防控近视眼应用
软件[ J]. 中国科技信息, 2020(13): 83-84.
JU Ling, ZHANG Changchun, HAN Xiangxiang, et al. An application
software for prevention and control of myopia based on artificial
intelligence[ J]. China Science and Technology Information, 2020(13):
83-84.
26、周云帆, 蒋沁. 基于移动云计算的儿童和青少年近视防控大数
据平台实践[ J]. 中国数字医学, 2020, 15(6): 123-124, 139.
ZHOU Yunfan, JIANG Qin. Practice of the big data platform for
myopia prevention and control of children and adolescents based on
mobile cloud computing[ J]. China Digital Medicine, 2020, 15(6):
123-124, 139.周云帆, 蒋沁. 基于移动云计算的儿童和青少年近视防控大数
据平台实践[ J]. 中国数字医学, 2020, 15(6): 123-124, 139.
ZHOU Yunfan, JIANG Qin. Practice of the big data platform for
myopia prevention and control of children and adolescents based on
mobile cloud computing[ J]. China Digital Medicine, 2020, 15(6):
123-124, 139.
27、Ohno-Matsui K, Kawasaki R, Jonas JB, et al. International photographic
classification and grading system for myopic maculopathy[ J]. Am J
Ophthalmol, 2015, 159(5): 877-883.e7.Ohno-Matsui K, Kawasaki R, Jonas JB, et al. International photographic
classification and grading system for myopic maculopathy[ J]. Am J
Ophthalmol, 2015, 159(5): 877-883.e7.
28、Ikuno Y. Overview of the complications of high myopia[ J]. Retina, 2017, 37(12): 2347-2351.Ikuno Y. Overview of the complications of high myopia[ J]. Retina, 2017, 37(12): 2347-2351.
29、Ohno-Matsui K . W hat is the fundamental nature of pathologic
myopia?[ J]. Retina, 2017, 37(6): 1043-1048.Ohno-Matsui K . W hat is the fundamental nature of pathologic
myopia?[ J]. Retina, 2017, 37(6): 1043-1048.
30、Zapata MA, Royo-Fibla D, Font O, et al. Artificial intelligence to
identify retinal fundus images, quality validation, laterality evaluation,
macular degeneration, and suspected glaucoma[ J]. Clin Ophthalmol,
2020, 14: 419-429.Zapata MA, Royo-Fibla D, Font O, et al. Artificial intelligence to
identify retinal fundus images, quality validation, laterality evaluation,
macular degeneration, and suspected glaucoma[ J]. Clin Ophthalmol,
2020, 14: 419-429.
31、Li Y, Feng W, Zhao X, et al. Development and validation of a deep
learning system to screen vision-threatening conditions in high myopia
using optical coherence tomography images[ J/OL]. Br J Ophthalmol,
2020, Epub ahead of print.Li Y, Feng W, Zhao X, et al. Development and validation of a deep
learning system to screen vision-threatening conditions in high myopia
using optical coherence tomography images[ J/OL]. Br J Ophthalmol,
2020, Epub ahead of print.
32、Hemelings R , Elen B, Blaschko MB, et al. Pathological myopia
classification with simultaneous lesion segmentation using deep
learning[ J]. Comput Methods Programs Biomed, 2021, 199: 105920.Hemelings R , Elen B, Blaschko MB, et al. Pathological myopia
classification with simultaneous lesion segmentation using deep
learning[ J]. Comput Methods Programs Biomed, 2021, 199: 105920.
33、许迅, 余奇. 人工智能在病理性近视眼底资料解析中的应用和
展望[ J]. 中华眼底病杂志, 2019, 35(5): 427-431.
XU Xun, YU Qi. Application and prospect of artificial intelligence
in the analysis of fundus images of pathological myopia[ J]. Chinese
Journal of Ocular Fundus Diseases, 2019, 35(5): 427-431.许迅, 余奇. 人工智能在病理性近视眼底资料解析中的应用和
展望[ J]. 中华眼底病杂志, 2019, 35(5): 427-431.
XU Xun, YU Qi. Application and prospect of artificial intelligence
in the analysis of fundus images of pathological myopia[ J]. Chinese
Journal of Ocular Fundus Diseases, 2019, 35(5): 427-431.
34、Fu H, Cheng J, Xu Y, et al. Joint optic disc and cup segmentation based
on multi-label deep network and polar transformation[ J]. IEEE Trans
Med Imaging, 2018, 37(7): 1597-1605.Fu H, Cheng J, Xu Y, et al. Joint optic disc and cup segmentation based
on multi-label deep network and polar transformation[ J]. IEEE Trans
Med Imaging, 2018, 37(7): 1597-1605.
35、Jiang Y, Duan L, Cheng J, et al. JointRCNN: a region-based
convolutional neural network for optic disc and cup segmentation[ J].
IEEE Trans Biomed Eng, 2020, 67(2): 335-343.Jiang Y, Duan L, Cheng J, et al. JointRCNN: a region-based
convolutional neural network for optic disc and cup segmentation[ J].
IEEE Trans Biomed Eng, 2020, 67(2): 335-343.
36、Dodo BI, Li Y, Eltayef K, et al. Automatic annotation of retinal layers in
optical coherence tomography images[ J]. J Med Syst, 2019, 43(12): 336.Dodo BI, Li Y, Eltayef K, et al. Automatic annotation of retinal layers in
optical coherence tomography images[ J]. J Med Syst, 2019, 43(12): 336.
37、Wu Y, Xia Y, Song Y, et al. NFN+: A novel network followed network
for retinal vessel segmentation[ J]. Neural Netw, 2020, 126: 153-162.Wu Y, Xia Y, Song Y, et al. NFN+: A novel network followed network
for retinal vessel segmentation[ J]. Neural Netw, 2020, 126: 153-162.
38、Tan TE, Anees A, Chen C, et al. Retinal photograph-based deep
learning algorithms for myopia and a blockchain platform to facilitate
artificial intelligence medical research: a retrospective multicohort
study[ J]. Lancet Digit Health, 2021, 3(5): e317-e329.Tan TE, Anees A, Chen C, et al. Retinal photograph-based deep
learning algorithms for myopia and a blockchain platform to facilitate
artificial intelligence medical research: a retrospective multicohort
study[ J]. Lancet Digit Health, 2021, 3(5): e317-e329.
39、Sogawa T, Tabuchi H, Nagasato D, et al. Accuracy of a deep
convolutional neural network in the detection of myopic macular
diseases using swept-source optical coherence tomography[ J]. PLoS
One, 2020, 15(4): e0227240.Sogawa T, Tabuchi H, Nagasato D, et al. Accuracy of a deep
convolutional neural network in the detection of myopic macular
diseases using swept-source optical coherence tomography[ J]. PLoS
One, 2020, 15(4): e0227240.
40、Sánchez-González JM, De-Hita-Cantalejo C, Baustita-Llamas MJ, et
al. The combined effect of low-dose atropine with orthokeratology in
pediatric myopia control: review of the current treatment status for
myopia[ J]. J Clin Med, 202, 9(8): 2371.Sánchez-González JM, De-Hita-Cantalejo C, Baustita-Llamas MJ, et
al. The combined effect of low-dose atropine with orthokeratology in
pediatric myopia control: review of the current treatment status for
myopia[ J]. J Clin Med, 202, 9(8): 2371.
41、Negishi K, Toda I, Ayaki M, et al. Subjective happiness and satisfaction
in postoperative anisometropic patients after refractive surgery for
myopia[ J]. J Clin Med, 2020, 9(11): 3473.Negishi K, Toda I, Ayaki M, et al. Subjective happiness and satisfaction
in postoperative anisometropic patients after refractive surgery for
myopia[ J]. J Clin Med, 2020, 9(11): 3473.
42、Bae JI, Yu DS, Kim SY, et al. Effect of optical correction by fully
corrected glasses on postural stability[ J]. PLoS One, 2020, 15(7):
e0235919.Bae JI, Yu DS, Kim SY, et al. Effect of optical correction by fully
corrected glasses on postural stability[ J]. PLoS One, 2020, 15(7):
e0235919.
43、Fan Y, Yu Z, Peng Z, et al. Machine learning based strategy surpasses
the traditional method for selecting the first trial Lens parameters for
corneal refractive therapy in Chinese adolescents with myopia[ J]. Cont
Lens Anterior Eye, 2021, 44(3): 101330.Fan Y, Yu Z, Peng Z, et al. Machine learning based strategy surpasses
the traditional method for selecting the first trial Lens parameters for
corneal refractive therapy in Chinese adolescents with myopia[ J]. Cont
Lens Anterior Eye, 2021, 44(3): 101330.
44、Li SM, Kang MT, Wang NL, et al. Wavefront excimer laser refractive
surgery for adults with refractive errors[ J]. Cochrane Database Syst
Rev, 2020, 12: CD012687.Li SM, Kang MT, Wang NL, et al. Wavefront excimer laser refractive
surgery for adults with refractive errors[ J]. Cochrane Database Syst
Rev, 2020, 12: CD012687.
45、Redd TK, Campbell JP, Chiang MF, et al. Artificial intelligence for
refractive surgery screening: finding the balance between myopia and
hype-ropia[ J]. JAMA Ophthalmol, 2020, 138(5): 526-527.Redd TK, Campbell JP, Chiang MF, et al. Artificial intelligence for
refractive surgery screening: finding the balance between myopia and
hype-ropia[ J]. JAMA Ophthalmol, 2020, 138(5): 526-527.
46、Castro-Luna G, Pérez-Rueda A. A predictive model for early diagnosis
of keratoconus[ J]. BMC Ophthalmol, 2020, 20(1): 263.Castro-Luna G, Pérez-Rueda A. A predictive model for early diagnosis
of keratoconus[ J]. BMC Ophthalmol, 2020, 20(1): 263.
47、Lavric A, Valentin P. KeratoDetect: keratoconus detection algorithm
using convolutional neural networks[ J]. Comput Intell Neurosci, 2019,
2019: 8162567.Lavric A, Valentin P. KeratoDetect: keratoconus detection algorithm
using convolutional neural networks[ J]. Comput Intell Neurosci, 2019,
2019: 8162567.
48、Xie Y, Zhao L, Yang X, et al. Screening candidates for refractive surgery
with corneal tomographic-based deep learning[ J]. JAMA Ophthalmol,
2020, 138(5): 519-526.Xie Y, Zhao L, Yang X, et al. Screening candidates for refractive surgery
with corneal tomographic-based deep learning[ J]. JAMA Ophthalmol,
2020, 138(5): 519-526.
49、Cui T, Wang Y, Ji S, et al. Applying machine learning techniques in
nomogram prediction and analysis for SMILE treatment[ J]. Am J
Ophthalmol, 2020, 210: 71-77.Cui T, Wang Y, Ji S, et al. Applying machine learning techniques in
nomogram prediction and analysis for SMILE treatment[ J]. Am J
Ophthalmol, 2020, 210: 71-77.
50、Achiron A, Gur Z, Aviv U, et al. Predicting refractive surgery outcome:
machine learning approach with big data[ J]. J Refract Surg, 2017,
33(9): 592-597.Achiron A, Gur Z, Aviv U, et al. Predicting refractive surgery outcome:
machine learning approach with big data[ J]. J Refract Surg, 2017,
33(9): 592-597.
51、Celi LA, Citi L, Ghassemi M, et al. The PLoS One collection on
machine learning in health and biomedicine: Towards open code and
open data[ J]. PLoS One, 2019, 14(1): e0210232.Celi LA, Citi L, Ghassemi M, et al. The PLoS One collection on
machine learning in health and biomedicine: Towards open code and
open data[ J]. PLoS One, 2019, 14(1): e0210232.
52、Wang S, Yu L, Yang X, et al. Patch-based output space adversarial
learning for joint optic disc and cup segmentation[ J]. IEEE Trans Med
Imaging, 2019, 38(11): 2485-2495.Wang S, Yu L, Yang X, et al. Patch-based output space adversarial
learning for joint optic disc and cup segmentation[ J]. IEEE Trans Med
Imaging, 2019, 38(11): 2485-2495.
53、Zhang W, Zhao X, Chen Y, et al. DeepUWF: An automated ultra-widefield fundus screening system via deep learning[ J]. IEEE J Biomed
Health Inform, 2021, 25(8): 2988-2996.Zhang W, Zhao X, Chen Y, et al. DeepUWF: An automated ultra-widefield fundus screening system via deep learning[ J]. IEEE J Biomed
Health Inform, 2021, 25(8): 2988-2996.