您的位置: 首页 > 2023年3月 第38卷 第3期 > 文字全文
2023年7月 第38卷 第7期11
目录

神经退行性疾病的眼部病理改变

Ocular pathological changes in neurodegenerative diseases

来源期刊: 眼科学报 | 2023年3月 第38卷 第3期 225-238 发布时间: 收稿时间:2023/3/27 15:52:33 阅读量:6625
作者:
关键词:
神经退行性疾病/病理学视网膜/病理学阿尔茨海默病帕金森病额颞叶痴呆
Neurodegenerative diseases/pathology Retina/pathology Alzheimer 's disease Parkinson's disease Frontotemporal dementia
DOI:
10.12419/j.issn.1000-4432.2023.03.06
视网膜是中枢神经系统的一部分。在胚胎起源上,视网膜和大脑均由神经管发育而来。因此,许多发生在大脑的神经退行性疾病往往会同时累及视网膜。而神经退行性疾病过程中相关的特征性病理改变,如病理性蛋白聚集和神经血管单元破坏也常能在视网膜组织中被检测到。在一些神经退行性疾病中,眼部的病理改变甚至在临床症状出现之前就已发生;其次视网膜易于观察且局部治疗操作便捷,因此近年来视网膜在中枢神经退行性疾病发病机制研究、早期诊断和新型治疗方式探究等方面备受关注。该文对常见神经退行性疾病的眼部病理改变进行综述,旨在为大脑和视网膜神经退行疾病的发病机制、诊断以及治疗研究提供新的见解。
The retina is a part of the central nervous system. Developmentally, both retina and brain are derived from the neural tube. Therefore, many neurodegenerative diseases that occur in the brain tend to involve both the retina. In the process of neurodegenerative diseases, related characteristic pathological changes, such as pathological protein aggregation, neurovascular unit impairment can often be detected in retinal tissue. In some neurodegenerative diseases, pathological changes in the eye occur even before clinical symptoms appear. In addition, the retina are easy to observe and local treatments are convenient. In recent years, the manifestations of the retina have attracted much attention in the study of pathogenesis, early diagnosis, and new treatments of systemic central neurodegenerative diseases. In this way, this article reviews the ocular pathological changes of common neurodegenerative diseases, aiming to provide new insights into the pathogenesis, diagnosis, and treatment of brain and retinal neurodegenerative diseases.

1 神经退行性疾病概述

神经退行性疾病是一类以神经元进行性变性为特征的致死性疾病[5],广义上神经退行性疾病包括阿尔茨海默病(alzheimer's disease,AD)、帕金森病(parkinson's disease,PD)、额颞叶痴呆(frontotemporal dementia,FTD)、肌萎缩侧索硬化症(amyotrophic lateral sclerosis,ALS)、亨廷顿病(huntington's disease,HD)、多发性硬化(multiple sclerosis,MS)和视神经脊髓炎谱系疾病(neuromyelitis optica Spectrum disorders,NMOSD)等。这些疾病发病机制复杂,目前认为病理性蛋白聚集、神经血管单元破坏最终导致神经元死亡是神经退行性疾病的共同病理特征[3-4]。上述病理改变常能在对应疾病患者或动物模型的视网膜组织被检测到。不同的神经退行性疾病常伴有特征性病理性蛋白的聚集和受累部位:例如AD中特征性病理蛋白——β淀粉样蛋白(amyloid β-protein,Aβ)和tau蛋白沉积在颞叶和大脑皮质[7];PD中α突触核蛋白(α-synuclein,α-Syn)沉积在中脑黑质[8];HD中亨廷顿蛋白(huntingtin,Htt)沉积在基底节区[9];FTD /ALS中TAR DNA结合蛋白43(transactive response DNA binding protein 43 kDa,TDP-43)沉积在额颞叶皮质和脊髓[10](图1)。泛素蛋白酶系统和自噬-溶酶体是神经元内负责蛋白质降解的两条最重要的途径,两者的受损可能是导致病理性蛋白沉积的主要原因[5,11-12]。病理性蛋白常在神经退行性疾病临床症状出现之前就已存在,并随着疾病的发展不断蓄积,因此这些聚集的病理性蛋白常被用做特异的生物标记物,用于各种神经退行性疾病的早期诊断和鉴别诊断[4,13]。但检测脑脊液中的病理性蛋白需通过有创的腰椎穿刺,检测脑组织中的病理性蛋白需通过价格昂贵的正电子发射断层扫描(PET)检查,使得这些检查难以用于神经退行性疾病的大范围早期筛查和长期监测。目前,神经退行性疾病的治疗以对症治疗为主,仍缺乏针对病理性改变的对因治疗。随着生物制剂在其他类型疾病的广泛应用,针对各类病理性蛋白沉积的单抗类药物研发成为热点,部分单抗类药物如anti-Aβ的Donanemab、Gantenerumab和Solanezumab等,anti-Tau的Bepranemab、Semorinemab和Tilavonemab等,anti-α-Syn的ABBV-0805、UCB7853和Prasinezumab等已进入不同阶段的临床试验[14]。个别单抗类药物比如anti-Aβ的Aducanumab已于2021年得到FDA的快速批准进入临床,但其疗效和安全性还需更大样本量的临床研究来验证[15]
20230328090435_2597.jpg
图 1 常见神经退行性疾病的眼部病理改变
Figure 1 Pathological changes of eye in common neurodegenerative diseases
注:不同神经退行性疾病均可检测到特征性蛋白的病理性聚集:阿尔茨海默病 (AD) 中的 Aβ 和 Tau、帕金森病 (PD)中的 α-Syn、额颞叶痴呆 (FTD) 和肌萎缩侧索硬化症 (ALS) 中的 TDP43、亨廷顿病 (HD) 中的 Htt。而这些病理性聚集的蛋白,也可在眼部视网膜内聚集,并导致视网膜神经血管单元的破坏,视神经萎缩;同时大脑及脊髓的神经系统脱髓鞘疾病比如多发性硬化 (MS) 和视神经脊髓炎谱系疾病 (NMOSD) 往往伴随视神经的脱髓鞘。
Pathological aggregation of specific proteins can be detected in different neurodegenerative diseases: Aβ and Tau in Alzheimer's disease(AD), α-Syn in Parkinson's disease(PD), TDP43 in frontotemporal dementia(FTD)and amyotrophic lateral sclerosis (ALS), Htt in Huntington's disease(HD). These pathologically aggregated proteins can also accumulate in the retina of the eye and lead to the destruction of retinal neurovascular units and optic nerve atrophy; On the other side, demyelinating diseases in the brain and spinal cord, such as multiple sclerosis(MS)and neuromyelitis optica spectrum disorder(NMOSD)is often accompanied by demyelination of the optic nerve.

2 眼部的病理改变

2.1 病理性蛋白的聚集

神经退行性疾病最显著的病理特征是病理性蛋白的聚集,最常见的是Aβ、tau蛋白、α-Syn、TDP-43和Htt。这些异常蛋白与朊蛋白具有相似的特性—自我“复制”、聚集的胞外“繁殖”和传递性神经病理学[16]。它们具有神经毒性,可通过诱发神经炎症反应或直接导致神经元死亡。与脑组织中出现的病理改变相似,在神经退行性疾病的患者和动物模型视网膜中均可见这些异常蛋白的沉积[17-18]( 图2)。同时,在神经退行性疾病发病过程中,随着认知能力下降,患者可出现视功能障碍和视网膜电流图异常,并且通过光学相干断层扫描检测到视网膜结构的异常[19-21],这些改变被认为是由于病理性蛋白对视网膜的直接损伤引起的。
20230328090622_6818.jpg
图 2 视网膜中常见神经退行性疾病特征性病理蛋白的聚集
Figure 2 Aggregation of characteristic pathological proteins of common neurodegenerative diseases in the retina
注:Aβ、Tau、α-Syn、Htt 等病理性蛋白在患者的视网膜中均存在聚集。关于 FTLD 或 ALS 的患者的视网膜中TDP43 的聚集仍缺乏相应的研究,在正常细胞中 TDP43 存在于核内,而在相关动物模型的视网膜组织 RGC 细胞中已发现 TDP43 在细胞质中蓄积并伴随细胞核中 TDP43 的丢失。AD:阿尔茨海默病,PD:帕金森病,HD: 亨廷顿舞蹈病,FTLD:额颞叶痴呆,ALS:肌萎缩侧索硬化症。
Pathological proteins such as Aβ, Tau, α-Syn and Htt aggregate in the retina of patients. TDP43 aggregation has not been characterized in the retina of patients with FTLD or ALS, but TDP43 accumulation in the cytoplasm accompanying with losing its nuclear localization was found in retinal cells of animal models. AD: Alzheimer's disease, PD: Parkinson's disease, HD: Huntington's Disease, FTLD: frontotemporal dementia, ALS: amyotrophic lateral sclerosis.
2.1.1 Aβ
Aβ是由36 ~ 43个氨基酸组成的多肽,来源于淀粉样前体蛋白(amyloid precursor protein,APP)的水解。组织内的Aβ主要以Aβ1-40和Aβ1-42两种亚型存在,其中Aβ1-40在大脑中更多见,但Aβ1-42更具有聚集倾向和神经毒性[22]。Aβ自发聚集成多种亚型共存的物理形式,其中可溶性低聚物和中间淀粉样蛋白被认为是Aβ最具神经毒性的形式[23]
研究者在AD患者的房水、晶状体、玻璃体以及视网膜中均发现了Aβ的聚集,其中以视网膜的聚集最为显著[24]。研究表明,正常的大脑和视网膜中有少量的Aβ聚集,且聚集的水平随着年龄的增长而增加[25]。AD患者和转基因小鼠大脑和视网膜中Aβ的聚集也呈年龄相关性,但聚集数量较同年龄的正常人显著增多,并且在视网膜的聚集早于大脑[25-27]。Garcia-Alloza等[27]发现,在AD-Tg小鼠模型中,视网膜中的Aβ斑块早在2.5 月龄时就已出现,而大脑中首次检测到Aβ斑块是在5月龄的时候。
AD转基因小鼠的视网膜从神经纤维层到感光细胞层均能观察到Aβ的聚集,但以神经节细胞层和内核层受累最明显[17-18,26,28]。此外,AD转基因小鼠的光感受器外节和视网膜色素上皮(retinal pigment epithelium,RPE)与Bruch膜的交界面也出现Aβ的聚集。Aβ最初积聚在光感受器外节的顶端,并随着年龄的增长逐渐向RPE发展。Aβ在该部位聚集被认为在某种程度上与RPE吞噬效率的下降有关,尽管Aβ聚集对光感受器外节损失的影响尚未明确,但有证据提示这一病理改变可能参与年龄相关性黄斑变性的发病[29-31]。此外,研究者在Tg2576小鼠、APPswe/PS1M146L和APPswe/PS?E9转基因小鼠视网膜和脉络膜血管管壁均检测到明显的Aβ信号,并且以22–36kda和50–64kda低聚体为主[32-34],这表明Aβ可能也会影响眼部血管的功能。Aβ在视网膜和脉络膜血管壁聚集的机制并不清楚,但在脑部血管中聚集的研究比较多[35],至于两者机制是否一致,还需进一步研究。
总之,Aβ在视网膜神经细胞各层以及视网膜和脉络膜血管中都有聚集,并且与视网膜组织细胞的功能障碍和变性密切相关。Aβ在眼部的聚集可早于脑组织出现,因此眼部聚集的Aβ可能成为AD早期诊断的生物指标。目前,针对Aβ的眼部检查已取得初步的进展,比如姜黄素Aβ成像、Aβ泪液检测等,但还需进一步优化技术方案,以满足临床需要的效能。
2.1.2 tau蛋白
tau是微管相关蛋白家族的成员,在神经元中高表达。tau蛋白主要通过影响微管的聚合和稳定调节轴突运输,因此与建立和维持神经元形态及功能密切相关[36]。在正常状态下,神经元内的tau蛋白以可溶性状态存在,并通过与微管发生可逆性结合来调节微管的稳定性和组装;而在病理状态下,tau蛋白以不可溶性聚集物的形式聚集形成双股螺旋细丝(paired helical filament,PHF),从而失去与微管的结合能力[37]。PHF可以抵抗蛋白酶的水解,并最终以神经原纤维缠结(neurofibrillarytangle,NFT)的形式聚集。
AD、PD、FTD等神经退行性疾病中均可见伴有过度磷酸化的tau蛋白的异常聚集[36,38-39]。在AD中,tau蛋白比Aβ更能准确反映患者的认知状况[40]。Tau P301S转基因小鼠是一种过度表达tau蛋白的模型小鼠,与野生型小鼠相比,Tau P301S转基因小鼠视网膜中总tau表达显著增加,主要聚集在视网膜神经节细胞层、内外核层,而内外丛状层和感光细胞层较少[41-43]。为了研究磷酸化tau在W T和P301S小鼠视网膜中的位置,Xia等[43]利用针对ser 202/thr 205(AT8)tau蛋白磷酸化的抗体进行了免疫染色,观察到位于不同视网膜层的磷酸化tau蛋白在P301S转基因小鼠视网膜中显著增加。并且,相比于第1个月,AT8染色在8个月大的P301S小鼠视网膜的外核层和感光细胞内节中显著增加,这表明与Aβ聚集相似,tau蛋白聚集也随着年龄逐渐进展。此外,在5个月大的P301S转基因小鼠视神经中,可检测到受损的轴突内富集有磷酸化tau蛋白、神经丝蛋白和泛素等形成的聚集物,并伴有排列紊乱的神经丝以及受损的线粒体[44]。这些改变表明病理性tau蛋白所致轴突运输障碍可能是tau引发神经元功能障碍的早期事件。因此,针对tau蛋白的靶向治疗或许可以在早期阻止tau蛋白相关性神经退行性疾病的进展。研究者利用tau蛋白单克隆抗体(tau oligomer monoclonal antibody,TOMA)治疗P301S小鼠,发现可以缓解视网膜神经节细胞变性、小胶质细胞激活和血管渗漏[43],这表明基于被动免疫原理的tau免疫疗法有望用于预防tau蛋白相关神经退行性疾病患者的病情。尽管多种TOMA在临床前研究和Ⅰ期临床研究中取得了积极的结果,但Ⅱ期临床研究结果表明,这些药物并不能改善tau蛋白相关神经退行性疾病患者的病情,针对多个TOMA的药物Semorinemab也于2021年宣告研发失败[44]。因此,TOMA是否对tau蛋白相关神经退行性疾病患者有效尚需临床研究进一步证实。
总之,在小鼠模型中tau蛋白主要沉积在视网膜的有核层(神经节细胞层和内外核层),但目前尚缺乏在活体视网膜中直接检测tau蛋白聚集的有效手段。因此,开发活体视网膜内tau蛋白聚集的检测手段,有望在tau蛋白相关神经退行性疾病(tau蛋白病)的早期诊断中发挥作用。另外,在治疗方面,未来针对tau蛋白的单克隆抗体可能为tau蛋白病患者带来福音。
2.1.3 α-Syn
α-Syn主要位于神经元突触末端,对突触可塑性、囊泡包装和运输非常重要,是构成Lewy小体的主要蛋白成分[45]。α-Syn低聚物的积累可导致轴突运输障碍,从而影响神经元的功能和存活[46-47],这被认为是PD和Lewy小体痴呆发病的关键病理改变。由α-Syn聚集物所致多巴胺能神经元变性,导致多巴胺神经递质分泌减少,可引发运动过缓、震颤等帕金森病样临床症状[48]
PD和Lewy小体痴呆患者常出现视觉功能障碍,而越来越多的研究表明PD和Lewy小体痴呆患者的视觉功能障碍主要是由视网膜无长突细胞和内丛状细胞中神经递质多巴胺的耗竭引起[49]。PD患者尸体眼部的病理显示,α-Syn聚集物多位于神经节细胞层、内丛状层和内核层,这与多巴胺能细胞的组织学分布相对应[50-51]。在PD转基因小鼠(Plp-α-Syn小鼠)中也发现,α-Syn主要沉积在神经纤维层、神经节细胞层、内丛状层和内核层,并且随年龄增长逐渐增加[52-53]。α-Syn的异常磷酸化与α-Syn的病理性聚集相关,因此与α-Syn的病理性聚集类似,异常磷酸化α-Syn主要沉积在PD患者的神经节细胞层,并且该处的聚集与脑部异常磷酸化α-Syn密度和运动功能显著相关[50]。同时,在小鼠模型中发现α-Syn聚集可以导致多巴胺能神经元的变性和多巴胺分泌减少,导致小鼠ERG振幅降低和视力下降[54],而给予左旋多巴胺治疗后可以缓解部分症状[55]
聚集在视网膜神经节细胞层、内丛状层和内核层的α-Syn被认为是引起视网膜内多巴胺能神经元变性,最终导致α-Syn蛋白相关神经退行性疾病患者视网膜神经退行性病变的重要病理基础。但目前尚缺乏可用于PD和Lewy小体痴呆早期检测的活体视网膜内α-Syn的有效检查方法。
2.1.4 TDP-43
TDP-43是一种高度保守且广泛表达的RNA/DNA结合蛋白,最初被鉴定为HIV-1基因表达的抑制因子[56]。TDP-43主要位于细胞核内,但TDP-43可以在细胞核和细胞质之间穿梭转运RNA,并且参与RNA生物学功能调控[57]。在细胞核中,TDP-43对mRNA的转录、剪接和核外转运均非常重要;在细胞质中,TDP-43则参与mRNA的稳定、翻译和核糖核蛋白转运颗粒的形成。此外,TDP-43还可调节微小RNA(microRNA)的生物发生和长链非编码RNA (long non-coding RNA, lncRNA)的加工[58-59]
过度磷酸化的TDP-43蛋白在细胞质中聚集以及细胞核内TDP-43水平下降是FTD和ALS等TDP-43蛋白病的重要病理特征。临床研究表明,97%的ALS病例和45%的FTD病例会出现TDP-43的病理性聚集物,其中几乎所有因颗粒蛋白(granulin,GRN)基因突变所致的FTD和C9orf72基因突变所致的ALS和FTD均存在病理性TDP-43聚集物[60-62]。目前,有限的文献尚未报道在FTD和ALS患者的视网膜中发现TDP-43的聚集物,但有学者发现TDP-43可在视网膜细胞胞质中蓄积并伴随细胞核内的TDP-43水平下降,而这些病理改变可能与该类疾病中视网膜组织的变薄密切相关[63-66]。为了研究TDP-43的致病机制,研究者构建了表达hTDP-43的转基因果蝇,他们发现TDP-43积聚产生的神经毒性可以导致运动神经元轴突肿胀、空泡形成,继而死亡。同时,他们还发现过表达的TDP-43可以导致果蝇的复眼视网膜退行性改变[66]。Miguel等[67]构建了hTDP-43mutNLS和hTDP43mutNES两个突变型TDP-43果蝇模型,它们分别缺乏核定位信号和核输出信号导致TDP-43无法在胞浆和细胞核之间自由穿梭。通过对这两个模型的研究,研究者发现不管TDP-43在胞质或胞核内积累,果蝇的运动及视网膜神经元都会发生死亡,这提示TDP-43在胞浆和细胞核之间穿梭障碍是导致神经退行性改变重要原因。随后,Ward等[65]在FTD模型小鼠(Grn-/-)中发现视网膜神经纤维层厚度显著减少,并且他们发现视网膜中TDP-43核定位所需的核导入主要调控因子—小GTPase Ran的表达减少。在进一步的研究中,Ihara等[68]发现当TDP-43与RNA无法结合时,不管是过表达野生型还是疾病相关的突变型(包括核信号突变)TDP-43所致的视网膜神经元细胞毒性都会消失。上述研究结果表明,穿梭在胞质和细胞核之间的TDP-43所介导的RNA转运是病理性TDP-43所致视网膜神经元死亡的核心病理机制。新近的研究表明病理性TDP-43可以与核孔蛋白(nucleoporins)和核转运因子(transport factor)发生共聚集,引起核孔复合体的结构及功能异常,进而导致细胞核与细胞质之间广泛的蛋白及RNA转运障碍[69-70]
总之,虽然病理性TDP-43在FTD和ALS发病机制中的关键作用已经被证实,但在视网膜内TDP-43是否也能形成类似于脑组织中发现的TDP43聚集物,以及病理性TDP-43是否可以通过RNA和蛋白转运障碍以外的其他机制导致视网膜神经元死亡仍然有待进一步研究。
2.1.5 Htt
Htt是神经元中广泛存在的蛋白,与囊泡和轴突运输有关[71]。Htt基因密码子中CAG异常重复扩增,从而编码N端有扩展的多聚谷氨酰胺(polyQ),它赋予突变型Htt蛋白神经毒性[72]。PolyQ可以使其突变体Htt蛋白发生错误折叠和积聚,而PolyQ延伸的Htt蛋白也可以与包括野生型Htt蛋白在内的其他多种功能蛋白以及RNA结合并与之共积聚最终在神经元内形成包涵体,从而引起泛素-蛋白酶体功能的障碍、转录调控紊乱、神经细胞轴突运输受损以及线粒体功能损伤等[73]
突变型Htt蛋白在神经元胞核和胞浆的聚集是HD的主要病理改变,Htt蛋白聚集可同时导致大脑和视网膜神经元的变性和死亡[74]。类似于Aβ和tau,突变Htt的沉积也随年龄增长而逐渐蓄积[75]。通过引入人源Htt第一个外显子和CAG的重复序列,建立HD的转基因小鼠R6/2,并发现在4周时视网膜内突变Htt量少且呈分散状态,而在8周时神经节细胞层聚集明显增多,但在16周时又减少,这可能和大部分含有Htt蛋白聚集物的神经元死亡有关[75]。在HD的转基因小鼠R6/1和R6/2中,突变Htt主要聚集在视网膜的有核层,而较少分布于轴突和树突所在的部位[76]。此外,部分研究者发现在光感受器和RPE中也有少量突变Htt积累[77]。最近,Karam等[78]用免疫电镜检查发现在R6/2小鼠的光感受器纤毛中有突变Htt的沉积,并且靠近纤毛根部沉积最明显,提示Htt的沉积可能影响纤毛的功能。感光细胞外节的组装、维持和功能依赖于沿着光感受器纤毛分布的鞭毛内运输,因此,纤毛功能障碍可能是突变Htt导致感光细胞变性死亡的重要机制。而靶向突变Htt蛋白聚集的调节因子可以缓解由此引发的视网膜神经元变性,例如Li等[79]将可以调节Htt蛋白聚集的Rho相关激酶抑制剂HA-1077通过脂质体静脉给药递送到视网膜,发现HA1077减少了HD的转基因小鼠R6/2小鼠视网膜感光细胞的死亡,并且增加ERG的振幅。
目前,虽然已经发现视网膜中Htt主要沉积在有核层,但其导致视网膜神经退行性改变的潜在分子机制尚不完全清楚,而HD转基因小鼠导致的视网膜变性是研究Htt发病机理的一个有力模型。

2.2 神经血管单元的病理改变

神经血管单元(neurovascular unit,NVU)是指包括神经元、神经胶质细胞(少突胶质细胞、小胶质细胞和星形胶质细胞)、血管组织(内皮细胞、周细胞和平滑肌细胞以及基底膜)在内的结构上相互联系的一个整体,是存在于大脑和视网膜中最基本的功能单位[80-82]。神经退行性疾病与大脑微血管功能障碍、神经血管单元解体、血-脑屏障(blood-brain barrier,BBB)功能障碍等因素有关,这些病理改变削弱了组织液、神经元、非神经元细胞中沉积的病理性蛋白的清除[83-84]。而病理性蛋白除了直接的神经毒性作用外,还可通过诱发神经炎症影响NVU的结构和功能,导致BBB破坏、胶质细胞活化、加重神经元丢失和脑组织萎缩等[85-86]。与大脑中的病理性改变相似,视网膜中的病理性蛋白沉积也会引起一些类似NVU病理改变,包括胶质细胞活化、血-视网膜屏障(blood-retinal barrier,BRB)破坏和视网膜神经元丢失[43,74,87-89](图3)。
20230328090909_6047.jpg
图 3 常见神经退行性疾病的视网膜神经血管单元改变
Figure 3 Changes of retinal neurovascular unit of common neurodegenerative diseases
注:正常 ( 左 ) 和神经退行性疾病 ( 右 ) 中视网膜神经血管单元的结构、形态和功能,其病理改变包括血管通透性增强、胶质细胞激活和释放神经毒性细胞因子、神经元变性死亡。
Structure, morphology, and function of retinal neurovascular units in normal conditions(left)and neurodegenerative diseases (right). Pathological changes include increased vascular permeability, glial cell activation and release of neurotoxic cytokines, neurodegeneration and death.
2.2.1 胶质细胞活化
NVU中的胶质细胞对神经元的存活及其功能维持至关重要,在神经退行性疾病中,小胶质细胞是研究最多的一类胶质细胞。小胶质细胞是中枢神经系统内特化的巨噬细胞,在生理条件下有免疫监视、神经营养及神经功能调控等作用;在病理状态下会发生增殖、活化、迁移并分泌炎症因子[90-91]。在神经退行性疾病中早期病理性蛋白发生聚集时,小胶质细胞可快速检测到这些异常蛋白,并能及时迁移、聚集在异常蛋白周围,一方面形成“保护屏障”,另一方面可以通过吞噬清除这些病理性蛋白,以减少其对神经元的毒性[92]。与神经退行性疾病相关的多种基因突变或单核苷酸多态性(SNP),如颗粒蛋白(GRN)、髓样细胞触发受体2(TREM2)、脂质磷酸酶(SHIP1)、载脂蛋白E(ApoE)等,可刺激小胶质细胞增殖并减弱其趋化和吞噬能力[93-96]。最近通过单细胞测序技术,Heren-Shaul等[97]发现了一类与神经退行性疾病病理改变相关的小胶质细胞(disease-associated microglia,DAM),这类小胶质细胞常高表达包括Apoe、Axl、Csf1、Clec7a、Cst7、Igf1、Itgax/CD11c、Lilrb4、Lpl、TREM2等在内的多种基因。DAM可通过激活慢性神经炎症和直接吞噬神经元突触导致神经元功能障碍甚至死亡。病理性聚集物的持续增加可激活小胶质细胞Toll样受体和NRLP3炎性小体,导致TNF-α、IL-1β和iNOS、CCL2、TNF-α等炎症细胞因子的分泌[98-99]。这些炎症因子可以通过各种途径诱发神经元的凋亡或坏死,比如TNF-α可通过神经元表面的TNF受体诱导神经元释放谷氨酰胺酶,导致兴奋毒性[100]。此外,活化的小胶质细胞还可以分泌谷氨酸、组织蛋白酶和(或)活性氧及活性氮化物,导致周围神经元的凋亡、兴奋毒性和坏死[101-102]。小胶质细胞通过表达补体受体,通过识别并吞噬神经元上表达补体的突触,来调节神经元之间的连接。在神经退行性疾病中补体C1q、C3、C4的过度激活,导致神经元突触大量丢失,最终死亡;同时补体系统激活引起的级联反应可加重DAM导致的神经炎症[103]。此外,活化的小胶质细胞通过分泌白介素-1α(IL-1α)、TNF-α和C1q激活星形胶质细胞向神经毒性A1转化,该类星形胶质细胞的激活可反过来加重小胶质细胞介导的补体依赖性神经毒性[104]
有学者在AD患者的视网膜中发现了大量激活的小胶质细胞迁移至A?斑块处将其包裹,并且高表达DAM的标志物IL-1β,同时视网膜中TREM2的mRNA水平也增高,星型胶质细胞反应性增生[105-106]。在出生后5周龄的3xTg-AD小鼠中,就已出现视网膜中小胶质细胞的异常激活,这表明视网膜中小胶质细胞对AD的反应可能先于大脑[107]。研究人员发现,8个月大的PD转基因小鼠TgM83的视网膜外丛状层中小胶质细胞显著增多,并且高表达小胶质细胞活化标志物CD68,形态也由分枝状变为阿米巴样[39]。另有学者在MS患者的视网膜神经纤维层、神经节细胞层、内丛状层和视神经脱髓鞘部位均发现了小胶质细胞的异常增殖和活化[108-109]
综上所述,视网膜胶质细胞的活化在神经退行性疾病导致的眼部改变中发挥重要的作用。积极寻找调节关键胶质细胞活化的通路,并进行靶向干预将为神经退行性疾病的治疗提供新思路[110]
2.2.2 微血管的病理改变
近年来的研究表明,神经退行性疾病中,病理性蛋白在血管壁聚集可引起血管功能障碍继而导致神经元功能障碍甚至神经退行性变[111]。例如AD病理过程中,Aβ在血管壁中的积累可引起脑血管的顺应性和通透性下降,导致脑组织血供不足以及代谢产物的清除下降,引发神经元的死亡[112]。而在AD患者的视网膜血管中也可以观察到多种结构与功能异常,包括血流动力学紊乱、周细胞丢失和Aβ沉积。Shi等[88]在轻度认知障碍和AD患者尸眼视网膜中发现血管周细胞凋亡增加和血管淀粉样变性。其也在AD小鼠模型(ADtg)中发现,ADtg小鼠的血管壁及血管表面均有大量的Aβ沉积、视网膜微血管变性、血管周细胞的丢失和BRB完整性破坏[89]。病理性tau蛋白的聚集也可以引起视网膜中微血管病变导致BRB破坏,并且BRB完整性的破坏在tau蛋白病的早期就已出现[43]。此外,Baksi等[113]发现,α-Syn可以通过影响RPE细胞对转铁蛋白结合铁的摄取,从而破坏RPE构成的BRB外屏障稳定性,这可能和PD相关的视网膜变性有关。淋巴管循环是血液循环系统的一部分,研究表明脑膜淋巴管引流障碍在脑内Aβ和α-Syn的蓄积中起重要作用,AD和PD模型小鼠脑膜淋巴管消融后可以加重Aβ沉积、小胶质细胞活化、NVU功能障碍和行为缺陷[114-115]
总之,微血管病理改变有助于研究者理解神经退行性的眼部变化,同时也可以帮助研究者更好地阐明视网膜神经退行性疾病发病机制,并为神经退行性疾病的的诊断和治疗提供了新的靶点。
2.2.3 神经元变性
神经元变性死亡是神经退行性疾病的最终病理改变,而病理性蛋白的聚集被认为是重要的诱发因素[116]。Aβ、tau、α-Syn、TDP-43、Htt等病理性蛋白异常折叠形成聚合物或包涵体,并沉积在神经元内或细胞外间质,通过激活内源性或外源性的细胞凋亡、坏死性凋亡、铁死亡、自噬性细胞死亡、细胞焦亡等死亡途径导致神经元死亡[117];此外过量吞噬细胞外沉积病理性蛋白的小胶质细胞可能被激活,继而引发的神经炎症或通过直接吞噬作用也可触发神经元死亡[118]。在AD、PD、HD、FTLD的动物模型中均发现了视网膜神经元的死亡,但视网膜神经元死亡的具体机制目前研究较少,还需更深入的研究[32,49,66,74,119]。值得注意的是,具有不同胞体和轴突大小的神经节细胞:M型(胞体和轴突较大)和P型(胞体和轴突较小)对病理性蛋白的耐受性常存在差异[120-121]。而不同胞体和轴突大小的节细胞往往负责不同的生理功能,比如具有较大轴突的M型节细胞主要参与低对比度和亮度刺激以及简单模式刺激,与运动检测的“亮度”相关[122]。它的特异性退化可以解释一些研究中报道的AD患者闪光VEP的异常[122-123]。胞体和轴突较小的P型节细胞主要参与精细视觉场景的检测和彩色视觉,而彩色视觉异常是AD患者常见的症状[124]。AD中M型和P型节细胞的受损顺序和程度的不同,对于AD发病过程的意义目前尚未清楚。总之,病理性蛋白聚集导致神经元变性死亡是神经退行性疾病最终的病理改变,而视网膜不同类型神经元死亡的分子机制及其在理解中枢神经退行性疾病的发病规律中的作用值得进一步深入研究。

2.3 视神经的病理改变

视神经由视网膜神经节细胞发出的无髓神经纤维轴突构成,穿过巩膜筛板后由少突胶质细胞包裹形成有髓神经纤维与中枢神经系统相连[125]。神经退行性疾病随着视网膜神经节细胞胞体的死亡,其发出的神经纤维轴突也相应减少,这表现为视网膜神经纤维层变薄、视神经萎缩[126]。视神经脱髓鞘也是中枢神经退行性疾病中视神经损伤的重要病理改变,主要发生在MS和NMOSD中[127]。MS是最常见的一类神经系统脱髓鞘疾病,除了累及大脑和脊髓,视神经也是MS常见的损伤部位。自身免疫系统功能异常在MS的发病过程中发挥重要作用,1型辅助性T淋巴细胞(Th1)和Th17细胞介导一系列复杂的级联免疫反应,最终导致神经纤维脱髓鞘[127-129]。同时,TNF-α、IL-6、Ⅰ型IFN等促炎因子分泌增加、补体激活也是MS视神经脱髓鞘的重要原因[130-132]。NMOSD是一种主要累及视神经和(或)脊髓的中枢神经系统自身免疫性炎性脱髓鞘疾病,大约50%的NMOSD患者以视神经炎作为首发表现,是引起患者视力严重下降的常见神经眼科疾病[132]。B淋巴细胞产生的特异性抗体是NMOSD中视神经脱髓鞘的根本原因。Lennon等[133]首次在患者血清中分离出NMO-IgG,其特异性与星形胶质细胞足突上的水通道蛋白4 (aquaporins4,AQP4 )结合是NMOSD发病的关键环节。外周血中AQP4-IgG穿过破坏的血脑屏障后与星形胶质细胞上的AQP4蛋白特异性结合,随后激活补体级联反应和神经炎症,最终导致视神经脱髓鞘和神经节细胞的死亡[134]。近年来,研究者发现部分NMOSD患者是由髓鞘少突胶质细胞糖蛋白抗体(MOG-IgG)引发的神经脱髓鞘,该类疾病与AQP4-IgG导致的NMOSD和MS在病理改变和临床表现上不完全一致[135]
作为中枢神经系统的一部分,视神经损伤在机制上往往可以反映大脑和脊髓的损伤,因此可以借助视神经研究中枢神经退行性疾病尤其是脱髓鞘疾病的发病机制,探索靶向自身免疫异常的小分子药物,以用于MS、NMOSD等患者的治疗。

3 总结与展望

综上所述,在大脑神经退行性疾病患者的视网膜内可出现与对应疾病脑组织相同的特征性病理改变:如病理性蛋白聚集、神经元丢失、胶质细胞激活等,并且上述特征性病理改变可在中枢神经系统中出现之前发生,提示视网膜可以作为有效手段,深入研究神经退行性疾病。具体体现在以下三个方面: 1)挖掘视网膜病理改变作为早期诊断作用的潜在价值。借助眼科的先进检查技术(例如高光谱眼底照相、高分辨率光学相干断层扫描)探索视网膜包括病理性蛋白聚集和视网膜结构改变等在内的病理改变与大脑神经退行性疾病之间的关联,并利用这些特征性的改变实现神经退行性疾病早期诊断。2)借助人工智能(artificial intelligence,AI)技术分析各类眼底病理影像辅助大脑神经退行性疾病的早期诊断、监测疾病的发展以及评估治疗效果。3)利用视网膜的易观察性和操作便捷性,发挥其在研究神经退行性疾病的模型作用。深入研究神经退行性疾病的分子机制,对阐明病理性蛋白的致病机制筛选高效的靶向药物,以及探索基因治疗、干细胞移植等前沿技术治疗大脑和视网膜神经退行性疾病的可行性有重要的意义。

开放获取声明

本文适用于知识共享许可协议 (Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CCBY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。详情请访问:https://creativecommons.org/licenses/by-nc-nd/4.0/。
1、Hou Y, Dan X , Babbar M, et al. A geing as a risk factor for neurodegenerative disease[ J]. Nat Rev Neurol, 2019, 15(10): 565-581.Hou Y, Dan X , Babbar M, et al. A geing as a risk factor for neurodegenerative disease[ J]. Nat Rev Neurol, 2019, 15(10): 565-581.
2、Golriz Khatami S, Mubeen S, Hofmann-Apitius M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives[ J]. Curr Opin Neurol, 2020, 33(2): 249-254Golriz Khatami S, Mubeen S, Hofmann-Apitius M. Data science in neurodegenerative disease: its capabilities, limitations, and perspectives[ J]. Curr Opin Neurol, 2020, 33(2): 249-254
3、Peng C, Trojanowski JQ, Lee VM. Protein transmission in neurodegenerative disease[ J]. Nat Rev Neurol, 2020, 16(4): 199-212.Peng C, Trojanowski JQ, Lee VM. Protein transmission in neurodegenerative disease[ J]. Nat Rev Neurol, 2020, 16(4): 199-212.
4、Kovacs GG. Molecular pathology of neurodegenerative diseases: principles and practice[ J]. J Clin Pathol, 2019, 72(11): 725-735.Kovacs GG. Molecular pathology of neurodegenerative diseases: principles and practice[ J]. J Clin Pathol, 2019, 72(11): 725-735.
5、Dugger BN, Dickson DW. Pathology of neurodegenerative diseases[ J]. Cold Spring Harb Perspect Biol, 2017, 9(7): a028035.Dugger BN, Dickson DW. Pathology of neurodegenerative diseases[ J]. Cold Spring Harb Perspect Biol, 2017, 9(7): a028035.
6、Erkkinen MG, Kim MO, Geschwind MD. Clinical neurology and epidemiology of the major neurodegenerative diseases[ J]. Cold Spring Harb Perspect Biol, 2018, 10(4): a033118.Erkkinen MG, Kim MO, Geschwind MD. Clinical neurology and epidemiology of the major neurodegenerative diseases[ J]. Cold Spring Harb Perspect Biol, 2018, 10(4): a033118.
7、Breijyeh Z, Karaman R. Comprehensive review on alzheimer's disease: causes and treatment[ J]. Molecules, 2020, 25(24): 5789.Breijyeh Z, Karaman R. Comprehensive review on alzheimer's disease: causes and treatment[ J]. Molecules, 2020, 25(24): 5789.
8、Jankovic J, Tan EK . Parkinson's disease: etiopathogenesis and treatment[ J]. J Neurol Neurosurg Psychiatry, 2020, 91(8): 795-808.Jankovic J, Tan EK . Parkinson's disease: etiopathogenesis and treatment[ J]. J Neurol Neurosurg Psychiatry, 2020, 91(8): 795-808.
9、McColgan P, Tabrizi SJ. Huntington's disease: a clinical review[ J]. Eur J Neurol, 2018, 25(1): 24-34.McColgan P, Tabrizi SJ. Huntington's disease: a clinical review[ J]. Eur J Neurol, 2018, 25(1): 24-34.
10、Younes K, Miller BL. Frontotemporal dementia: neuropathology, genetics, neuroimaging, and treatments[ J]. Psychiatr Clin North Am, 2020, 43(2): 331-344.Younes K, Miller BL. Frontotemporal dementia: neuropathology, genetics, neuroimaging, and treatments[ J]. Psychiatr Clin North Am, 2020, 43(2): 331-344.
11、Sullivan PM, Zhou X, Robins AM, et al. The ALS/FTLD associated protein C9orf72 associates with SMCR8 and WDR41 to regulate the autophagy-lysosome pathway[ J]. Acta Neuropathol Commun, 2016, 4(1): 51.Sullivan PM, Zhou X, Robins AM, et al. The ALS/FTLD associated protein C9orf72 associates with SMCR8 and WDR41 to regulate the autophagy-lysosome pathway[ J]. Acta Neuropathol Commun, 2016, 4(1): 51.
12、Zhou X, Sun L, Bracko O, et al. Impaired prosaposin lysosomal trafficking in frontotemporal lobar degeneration due to progranulin mutations[ J]. Nat Commun, 2017, 8: 15277.Zhou X, Sun L, Bracko O, et al. Impaired prosaposin lysosomal trafficking in frontotemporal lobar degeneration due to progranulin mutations[ J]. Nat Commun, 2017, 8: 15277.
13、Kovacs GG, Botond G, Budka H. Protein coding of neurodegenerative dementias: the neuropathological basis of biomarker diagnostics[ J]. Acta Neuropathol, 2010, 119(4): 389-408.Kovacs GG, Botond G, Budka H. Protein coding of neurodegenerative dementias: the neuropathological basis of biomarker diagnostics[ J]. Acta Neuropathol, 2010, 119(4): 389-408.
14、Alzforum. a catalog of the therapeutics currently or previously tested as treatment for Alzheimer's disease and related disorders [EB/OL]. [2022-05-29]. https://www.alzforum.org/therapeutics.Alzforum. a catalog of the therapeutics currently or previously tested as treatment for Alzheimer's disease and related disorders [EB/OL]. [2022-05-29]. https://www.alzforum.org/therapeutics.
15、Liu KY, Howard R. Can we learn lessons from the FDA's approval of aducanumab?[ J]. Nat Rev Neurol, 2021, 17(11): 715-722.Liu KY, Howard R. Can we learn lessons from the FDA's approval of aducanumab?[ J]. Nat Rev Neurol, 2021, 17(11): 715-722.
16、Lauwers E, Lalli G, Brandner S, et al. Potential human transmission of amyloid β pathology: surveillance and risks[ J]. Lancet Neurol, 2020, 19(10): 872-878.Lauwers E, Lalli G, Brandner S, et al. Potential human transmission of amyloid β pathology: surveillance and risks[ J]. Lancet Neurol, 2020, 19(10): 872-878.
17、Chiu K, Chan TF, Wu A, et al. Neurodegeneration of the retina in mouse models of Alzheimer's disease: what can we learn from the retina?[ J]. AGE, 2012, 34(3): 633-649.Chiu K, Chan TF, Wu A, et al. Neurodegeneration of the retina in mouse models of Alzheimer's disease: what can we learn from the retina?[ J]. AGE, 2012, 34(3): 633-649.
18、Mirzaei N, Shi H, Oviatt M, et al. Alzheimer's retinopathy: seeing disease in the eyes[ J]. Front Neurosci, 2020, 14: 921.Mirzaei N, Shi H, Oviatt M, et al. Alzheimer's retinopathy: seeing disease in the eyes[ J]. Front Neurosci, 2020, 14: 921.
19、Ge YJ, Xu W, Ou YN, et al. Retinal biomarkers in Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis[ J]. Ageing Res Rev, 2021, 69: 101361.Ge YJ, Xu W, Ou YN, et al. Retinal biomarkers in Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis[ J]. Ageing Res Rev, 2021, 69: 101361.
20、Berisha F, Feke GT, Trempe CL, et al. Retinal abnormalities in early Alzheimer's disease[ J]. Invest Ophthalmol Vis Sci, 2007, 48(5): 2285- 2289.Berisha F, Feke GT, Trempe CL, et al. Retinal abnormalities in early Alzheimer's disease[ J]. Invest Ophthalmol Vis Sci, 2007, 48(5): 2285- 2289.
21、Donix M, Wittig D, Hermann W, et al. Relation of retinal and hippocampal thickness in patients with amnestic mild cognitive impairment and healthy controls[ J]. Brain Behav, 2021, 11(5): e02035.Donix M, Wittig D, Hermann W, et al. Relation of retinal and hippocampal thickness in patients with amnestic mild cognitive impairment and healthy controls[ J]. Brain Behav, 2021, 11(5): e02035.
22、Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide[ J]. Nat Rev Mol Cell Biol, 2007, 8(2): 101-112.Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide[ J]. Nat Rev Mol Cell Biol, 2007, 8(2): 101-112.
23、Ohno-Matsui K. Parallel findings in age-related macular degeneration and Alzheimer's disease[ J]. Prog Retin Eye Res, 2011, 30(4): 217-238.Ohno-Matsui K. Parallel findings in age-related macular degeneration and Alzheimer's disease[ J]. Prog Retin Eye Res, 2011, 30(4): 217-238.
24、Shah TM, Gupta SM, Chatterjee P, et al. Beta-amyloid sequelae in the eye: a critical review on its diagnostic significance and clinical relevance in Alzheimer's disease. Mol Psychiatry, 2017, 22(3): 353-363.Shah TM, Gupta SM, Chatterjee P, et al. Beta-amyloid sequelae in the eye: a critical review on its diagnostic significance and clinical relevance in Alzheimer's disease. Mol Psychiatry, 2017, 22(3): 353-363.
25、Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, et al. Identification of amyloid plaques in retinas from Alzheimer's patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage, 2011, 54(Suppl 1): S204-S217.Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, et al. Identification of amyloid plaques in retinas from Alzheimer's patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage, 2011, 54(Suppl 1): S204-S217.
26、Perez SE, Lumayag S, Kovacs B, et al. Beta-amyloid deposition and functional impairment in the retina of the APPswe/PS1DeltaE9 transgenic mouse model of Alzheimer's disease. Invest Ophthalmol Vis Sci, 2009, 50(2): 793-800.Perez SE, Lumayag S, Kovacs B, et al. Beta-amyloid deposition and functional impairment in the retina of the APPswe/PS1DeltaE9 transgenic mouse model of Alzheimer's disease. Invest Ophthalmol Vis Sci, 2009, 50(2): 793-800.
27、Garcia-Alloza M, Robbins EM, Zhang-Nunes SX, et al. Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol Dis, 2006, 24(3): 516-524.Garcia-Alloza M, Robbins EM, Zhang-Nunes SX, et al. Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol Dis, 2006, 24(3): 516-524.
28、Hart NJ, Koronyo Y, Black KL, et al. Ocular indicators of Alzheimer's: exploring disease in the retina. Acta Neuropathol, 2016, 132(6): 767- 787.Hart NJ, Koronyo Y, Black KL, et al. Ocular indicators of Alzheimer's: exploring disease in the retina. Acta Neuropathol, 2016, 132(6): 767- 787.
29、Lynn SA, Johnston DA, Scott JA, et al. Oligomeric Aβ1-42 induces an AMD-like phenotype and accumulates in lysosomes to impair RPE function. Cells, 2021, 10(2): 413.Lynn SA, Johnston DA, Scott JA, et al. Oligomeric Aβ1-42 induces an AMD-like phenotype and accumulates in lysosomes to impair RPE function. Cells, 2021, 10(2): 413.
30、Dong ZZ, Li J, Gan YF, et al. Amyloid beta deposition related retinal pigment epithelium cell impairment and subretinal microglia activation in aged APPswePS1 transgenic mice. Int J Ophthalmol, 2018, 11(5): 747-755.Dong ZZ, Li J, Gan YF, et al. Amyloid beta deposition related retinal pigment epithelium cell impairment and subretinal microglia activation in aged APPswePS1 transgenic mice. Int J Ophthalmol, 2018, 11(5): 747-755.
31、Zhao T, Gao J, van J, et al. Age-related increases in amyloid beta and membrane attack complex: evidence of inflammasome activation in the rodent eye. J Neuroinflammation, 2015, 12: 121.Zhao T, Gao J, van J, et al. Age-related increases in amyloid beta and membrane attack complex: evidence of inflammasome activation in the rodent eye. J Neuroinflammation, 2015, 12: 121.
32、Dutescu RM, Li QX, Crowston J, et al. Amyloid precursor protein processing and retinal pathology in mouse models of Alzheimer's disease. Graefes Arch Clin Exp Ophthalmol, 2009, 247(9):1213-1221.Dutescu RM, Li QX, Crowston J, et al. Amyloid precursor protein processing and retinal pathology in mouse models of Alzheimer's disease. Graefes Arch Clin Exp Ophthalmol, 2009, 247(9):1213-1221.
33、Gupta VK, Chitranshi N, Gupta VB, et al. Amyloid β accumulation and inner retinal degenerative changes in Alzheimer's disease transgenic mouse. Neurosci Lett, 2016, 623: 52-56.Gupta VK, Chitranshi N, Gupta VB, et al. Amyloid β accumulation and inner retinal degenerative changes in Alzheimer's disease transgenic mouse. Neurosci Lett, 2016, 623: 52-56.
34、Ning A, Cui J, To E, et al. Amyloid-beta deposits lead to retinal degeneration in a mouse model of Alzheimer disease[ J]. Invest Ophthalmol Vis Sci, 2008, 49(11): 5136-5143Ning A, Cui J, To E, et al. Amyloid-beta deposits lead to retinal degeneration in a mouse model of Alzheimer disease[ J]. Invest Ophthalmol Vis Sci, 2008, 49(11): 5136-5143
35、Thurgur H, Pinteaux E. Microglia in the Neurovascular Unit: BloodBrain Barrier-microglia Interactions After Central Nervous System Disorders[ J]. Neuroscience, 2019, 405: 55-67Thurgur H, Pinteaux E. Microglia in the Neurovascular Unit: BloodBrain Barrier-microglia Interactions After Central Nervous System Disorders[ J]. Neuroscience, 2019, 405: 55-67
36、Gendron TF, Petrucelli L. The role of tau in neurodegeneration[ J]. Mol Neurodegener, 2009, 4: 13.Gendron TF, Petrucelli L. The role of tau in neurodegeneration[ J]. Mol Neurodegener, 2009, 4: 13.
37、Hernández F, Ferrer I, Pérez M, et al. Tau aggregation[ J]. Neuroscience, 2022: S0306-4522(22)00220.Hernández F, Ferrer I, Pérez M, et al. Tau aggregation[ J]. Neuroscience, 2022: S0306-4522(22)00220.
38、Ballatore C, Lee VM, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders[ J]. Nat Rev Neurosci, 2007, 8(9): 663-672Ballatore C, Lee VM, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders[ J]. Nat Rev Neurosci, 2007, 8(9): 663-672
39、Mammadova N, Summers CM, Kokemuller RD, et al. Accelerated accumulation of retinal α- synuclein( pSer 129 ) and tau , neuroinflammation, and autophagic dysregulation in a seeded mouse model of Parkinson's disease[ J]. Neurobiol Dis, 2019, 121: 1-16.Mammadova N, Summers CM, Kokemuller RD, et al. Accelerated accumulation of retinal α- synuclein( pSer 129 ) and tau , neuroinflammation, and autophagic dysregulation in a seeded mouse model of Parkinson's disease[ J]. Neurobiol Dis, 2019, 121: 1-16.
40、Brier MR, Gordon B, Friedrichsen K, et al. Tau and Aβ imaging, CSF measures, and cognition in Alzheimer's disease[ J]. Sci Transl Med, 2016, 8(338): 338ra66.Brier MR, Gordon B, Friedrichsen K, et al. Tau and Aβ imaging, CSF measures, and cognition in Alzheimer's disease[ J]. Sci Transl Med, 2016, 8(338): 338ra66.
41、Harrison IF, Whitaker R, Bertelli PM, et al. Optic nerve thinning and neurosensory retinal degeneration in the rTg4510 mouse model of frontotemporal dementia[ J]. Acta Neuropathol Commun, 2019, 7(1): 4.Harrison IF, Whitaker R, Bertelli PM, et al. Optic nerve thinning and neurosensory retinal degeneration in the rTg4510 mouse model of frontotemporal dementia[ J]. Acta Neuropathol Commun, 2019, 7(1): 4.
42、Sch?n C, Hoffmann NA, Ochs SM, et al. Long-term in vivo imaging of fibrillar tau in the retina of P301S transgenic mice[ J]. PLoS One, 2012, 7(12): e53547.Sch?n C, Hoffmann NA, Ochs SM, et al. Long-term in vivo imaging of fibrillar tau in the retina of P301S transgenic mice[ J]. PLoS One, 2012, 7(12): e53547.
43、Xia F, Ha Y, Shi S, et al. Early alterations of neurovascular unit in the retina in mouse models of tauopathy[ J]. Acta Neuropathol Commun, 2021, 9(1): 51.Xia F, Ha Y, Shi S, et al. Early alterations of neurovascular unit in the retina in mouse models of tauopathy[ J]. Acta Neuropathol Commun, 2021, 9(1): 51.
44、Mullard A. Failure of first anti-tau antibody in Alzheimer disease highlights risks of history repeating[ J]. Nat Rev Drug Discov, 2021, 20(1): 3-5.Mullard A. Failure of first anti-tau antibody in Alzheimer disease highlights risks of history repeating[ J]. Nat Rev Drug Discov, 2021, 20(1): 3-5.
45、Ross OA, Braithwaite AT, Skipper LM, et al. Genomic investigation of alpha-synuclein multiplication and Parkinsonism[ J]. Ann Neurol, 2008, 63(6): 743-750.Ross OA, Braithwaite AT, Skipper LM, et al. Genomic investigation of alpha-synuclein multiplication and Parkinsonism[ J]. Ann Neurol, 2008, 63(6): 743-750.
46、Issa AR, Sun J, Petitgas C, et al. The lysosomal membrane protein LAMP2A promotes autophagic flux and prevents SNCA-induced Parkinson disease-like symptoms in the Drosophila brain[ J]. Autophagy, 2018, 14(11): 1898-1910.Issa AR, Sun J, Petitgas C, et al. The lysosomal membrane protein LAMP2A promotes autophagic flux and prevents SNCA-induced Parkinson disease-like symptoms in the Drosophila brain[ J]. Autophagy, 2018, 14(11): 1898-1910.
47、Volpicelli-Daley LA, Gamble KL, Schultheiss CE, et al. Formation of α-synuclein Lewy neurite-like aggregates in axons impedes the transport of distinct endosomes[ J]. Mol Biol Cell, 2014, 25(25): 4010- 4023.Volpicelli-Daley LA, Gamble KL, Schultheiss CE, et al. Formation of α-synuclein Lewy neurite-like aggregates in axons impedes the transport of distinct endosomes[ J]. Mol Biol Cell, 2014, 25(25): 4010- 4023.
48、Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson's disease[ J]. Neurobiol Dis, 2018, 109(Pt B): 249-257.Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson's disease[ J]. Neurobiol Dis, 2018, 109(Pt B): 249-257.
49、Mohana Devi S, Mahalaxmi I, Aswathy NP, et al. Does retina play a role in Parkinson's Disease?[ J]. Acta Neurol Belg, 2020, 120(2): 257-265.Mohana Devi S, Mahalaxmi I, Aswathy NP, et al. Does retina play a role in Parkinson's Disease?[ J]. Acta Neurol Belg, 2020, 120(2): 257-265.
50、Ortu?o-Lizarán I, Beach TG, Serrano GE, et al. Phosphorylated α-synuclein in the retina is a biomarker of Parkinson's disease pathology severity[ J]. Mov Disord, 2018, 33(8): 1315-1324.Ortu?o-Lizarán I, Beach TG, Serrano GE, et al. Phosphorylated α-synuclein in the retina is a biomarker of Parkinson's disease pathology severity[ J]. Mov Disord, 2018, 33(8): 1315-1324.
51、Bodis-Wollner I, Kozlowski PB, Glazman S, et al. α-synuclein in the inner retina in parkinson disease[ J]. Ann Neurol, 2014, 75(6): 964- 966.Bodis-Wollner I, Kozlowski PB, Glazman S, et al. α-synuclein in the inner retina in parkinson disease[ J]. Ann Neurol, 2014, 75(6): 964- 966.
52、Veys L, Vandenabeele M, Ortu?o-Lizarán I, et al. Retinal α-synuclein deposits in Parkinson's disease patients and animal models[ J]. Acta Neuropathol, 2019, 137(3): 379-395.Veys L, Vandenabeele M, Ortu?o-Lizarán I, et al. Retinal α-synuclein deposits in Parkinson's disease patients and animal models[ J]. Acta Neuropathol, 2019, 137(3): 379-395.
53、Kaehler K, Seitter H, Sandbichler AM, et al. Assessment of the retina of plp-α-syn mice as a model for studying synuclein-dependent diseases[ J]. Invest Ophthalmol Vis Sci, 2020, 61(6): 12.Kaehler K, Seitter H, Sandbichler AM, et al. Assessment of the retina of plp-α-syn mice as a model for studying synuclein-dependent diseases[ J]. Invest Ophthalmol Vis Sci, 2020, 61(6): 12.
54、Tsai Y, Lu B, Ljubimov AV, et al. Ocular changes in TgF344-AD rat model of Alzheimer's disease[ J]. Invest Ophthalmol Vis Sci, 2014, 55(1): 523-534.Tsai Y, Lu B, Ljubimov AV, et al. Ocular changes in TgF344-AD rat model of Alzheimer's disease[ J]. Invest Ophthalmol Vis Sci, 2014, 55(1): 523-534.
55、Marrocco E, Indrieri A, Esposito F, et al. α-synuclein overexpression in the retina leads to vision impairment and degeneration of dopaminergic amacrine cells[ J]. Sci Rep, 2020, 10(1): 9619.Marrocco E, Indrieri A, Esposito F, et al. α-synuclein overexpression in the retina leads to vision impairment and degeneration of dopaminergic amacrine cells[ J]. Sci Rep, 2020, 10(1): 9619.
56、Prasad A, Bharathi V, Sivalingam V, et al. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis[ J]. Front Mol Neurosci, 2019, 12: 25.Prasad A, Bharathi V, Sivalingam V, et al. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis[ J]. Front Mol Neurosci, 2019, 12: 25.
57、Pinarbasi ES, Ca?atay T, Fung HYJ, et al. Active nuclear import and passive nuclear export are the primary determinants of TDP-43 localization[ J]. Sci Rep, 2018, 8(1): 7083.Pinarbasi ES, Ca?atay T, Fung HYJ, et al. Active nuclear import and passive nuclear export are the primary determinants of TDP-43 localization[ J]. Sci Rep, 2018, 8(1): 7083.
58、de Boer EMJ, Orie VK, Williams T, et al. TDP-43 proteinopathies: a new wave of neurodegenerative diseases[ J]. J Neurol Neurosurg Psychiatry, 2020, 92(1): 86-95.de Boer EMJ, Orie VK, Williams T, et al. TDP-43 proteinopathies: a new wave of neurodegenerative diseases[ J]. J Neurol Neurosurg Psychiatry, 2020, 92(1): 86-95.
59、Birsa N, Bentham MP, Fratta P. Cytoplasmic functions of TDP-43 and FUS and their role in ALS[ J]. Semin Cell Dev Biol, 2020, 99: 193-201.Birsa N, Bentham MP, Fratta P. Cytoplasmic functions of TDP-43 and FUS and their role in ALS[ J]. Semin Cell Dev Biol, 2020, 99: 193-201.
60、Wood A, Gurfinkel Y, Polain N, et al. Molecular mechanisms underlying TDP-43 pathology in cellular and animal models of ALS and FTLD[ J]. Int J Mol Sci, 2021, 22(9): 4705.Wood A, Gurfinkel Y, Polain N, et al. Molecular mechanisms underlying TDP-43 pathology in cellular and animal models of ALS and FTLD[ J]. Int J Mol Sci, 2021, 22(9): 4705.
61、Cook CN, Wu Y, Odeh HM, et al. C9orf72 poly(GR) aggregation induces TDP-43 proteinopathy[ J]. Sci Transl Med, 2020, 12(559): eabb3774.Cook CN, Wu Y, Odeh HM, et al. C9orf72 poly(GR) aggregation induces TDP-43 proteinopathy[ J]. Sci Transl Med, 2020, 12(559): eabb3774.
62、Nicholson AM, Zhou X, Perkerson RB, et al. Loss of Tmem106b is unable to ameliorate frontotemporal dementia-like phenotypes in an AAV mouse model of C9ORF72-repeat induced toxicity[ J]. Acta Neuropathol Commun, 2018, 6(1): 42.Nicholson AM, Zhou X, Perkerson RB, et al. Loss of Tmem106b is unable to ameliorate frontotemporal dementia-like phenotypes in an AAV mouse model of C9ORF72-repeat induced toxicity[ J]. Acta Neuropathol Commun, 2018, 6(1): 42.
63、Fawzi AA, Simonett JM, Purta P, et al. Clinicopathologic report of ocular involvement in ALS patients with C9orf72 mutation[ J]. Amyotroph Lateral Scler Frontotemporal Degener, 2014, 15(7/8): 569-580.Fawzi AA, Simonett JM, Purta P, et al. Clinicopathologic report of ocular involvement in ALS patients with C9orf72 mutation[ J]. Amyotroph Lateral Scler Frontotemporal Degener, 2014, 15(7/8): 569-580.
64、Atkinson R, Leung J, Bender J, et al. TDP-43 mislocalization drives neurofilament changes in a novel model of TDP-43 proteinopathy[ J]. Dis Model Mech, 2021, 14(2): dmm047548.Atkinson R, Leung J, Bender J, et al. TDP-43 mislocalization drives neurofilament changes in a novel model of TDP-43 proteinopathy[ J]. Dis Model Mech, 2021, 14(2): dmm047548.
65、Ward M E, Taubes A, Chen R, et al. Early retinal neurodegeneration and impaired Ran-mediated nuclear import of TDP-43 in progranulin-deficient FTLD[ J]. J Exp Med, 2014, 211(10): 1937-1945.Ward M E, Taubes A, Chen R, et al. Early retinal neurodegeneration and impaired Ran-mediated nuclear import of TDP-43 in progranulin-deficient FTLD[ J]. J Exp Med, 2014, 211(10): 1937-1945.
66、Li Y, R ay P, R ao EJ, et al. A drosophila model for TDP-43 proteinopathy[ J]. Proc Natl Acad Sci USA, 2010, 107(7): 3169-3174.Li Y, R ay P, R ao EJ, et al. A drosophila model for TDP-43 proteinopathy[ J]. Proc Natl Acad Sci USA, 2010, 107(7): 3169-3174.
67、Miguel L, Frébourg T, Campion D, et al. Both cytoplasmic and nuclear accumulations of the protein are neurotoxic in Drosophila models of TDP-43 proteinopathies[ J]. Neurobiol Dis, 2011, 41(2): 398-406.Miguel L, Frébourg T, Campion D, et al. Both cytoplasmic and nuclear accumulations of the protein are neurotoxic in Drosophila models of TDP-43 proteinopathies[ J]. Neurobiol Dis, 2011, 41(2): 398-406.
68、Ihara R , Matsukawa K , Nagata Y, et al. RNA binding mediates neurotoxicity in the transgenic Drosophila model of TDP-43 proteinopathy[ J]. Hum Mol Genet, 2013, 22(22): 4474-4484.Ihara R , Matsukawa K , Nagata Y, et al. RNA binding mediates neurotoxicity in the transgenic Drosophila model of TDP-43 proteinopathy[ J]. Hum Mol Genet, 2013, 22(22): 4474-4484.
69、Chou CC, Zhang Y, Umoh ME, et al. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/ FTD[ J]. Nat Neurosci, 2018, 21(2): 228-239Chou CC, Zhang Y, Umoh ME, et al. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/ FTD[ J]. Nat Neurosci, 2018, 21(2): 228-239
70、Fallini C, Khalil B, Smith CL, et al. Traffic jam at the nuclear pore: all roads lead to nucleocytoplasmic transport defects in ALS/FTD[ J]. Neurobiol Dis, 2020, 140: 104835.Fallini C, Khalil B, Smith CL, et al. Traffic jam at the nuclear pore: all roads lead to nucleocytoplasmic transport defects in ALS/FTD[ J]. Neurobiol Dis, 2020, 140: 104835.
71、Caviston JP, Holzbaur ELF. Huntingtin as an essential integrator of intracellular vesicular trafficking[ J]. Trends Cell Biol, 2009, 19(4): 147-155.Caviston JP, Holzbaur ELF. Huntingtin as an essential integrator of intracellular vesicular trafficking[ J]. Trends Cell Biol, 2009, 19(4): 147-155.
72、Cattaneo E, Zuccato C, Tartari M. Normal huntingtin function: an alternative approach to Huntington's disease[ J]. Nat Rev Neurosci, 2005, 6(12): 919-930.Cattaneo E, Zuccato C, Tartari M. Normal huntingtin function: an alternative approach to Huntington's disease[ J]. Nat Rev Neurosci, 2005, 6(12): 919-930.
73、Takahashi T, Katada S, Onodera O. Polyglutamine diseases: where does toxicity come from? what is toxicity? where are we going?[ J]. J Mol Cell Biol, 2010, 2(4): 180-191.Takahashi T, Katada S, Onodera O. Polyglutamine diseases: where does toxicity come from? what is toxicity? where are we going?[ J]. J Mol Cell Biol, 2010, 2(4): 180-191.
74、Batcha AH, Greferath U, Jobling AI, et al. Retinal dysfunction, photoreceptor protein dysregulation and neuronal remodelling in the R6/1 mouse model of Huntington's disease[ J]. Neurobiol Dis, 2012, 45(3): 887-896.Batcha AH, Greferath U, Jobling AI, et al. Retinal dysfunction, photoreceptor protein dysregulation and neuronal remodelling in the R6/1 mouse model of Huntington's disease[ J]. Neurobiol Dis, 2012, 45(3): 887-896.
75、Ragauskas S, Leinonen H, Puranen J, et al. Early retinal function deficit without prominent morphological changes in the R6/2 mouse model of Huntington's disease[ J]. PLoS One, 2014, 9(12): e113317.Ragauskas S, Leinonen H, Puranen J, et al. Early retinal function deficit without prominent morphological changes in the R6/2 mouse model of Huntington's disease[ J]. PLoS One, 2014, 9(12): e113317.
76、Helmlinger D, Yvert G, Picaud S, et al. Progressive retinal degeneration and dysfunction in R6 Huntington's disease mice[ J]. Hum Mol Genet, 2002, 11(26): 3351-3359.Helmlinger D, Yvert G, Picaud S, et al. Progressive retinal degeneration and dysfunction in R6 Huntington's disease mice[ J]. Hum Mol Genet, 2002, 11(26): 3351-3359.
77、Petrasch-Parwez E, Habbes HW, Weickert S, et al. Fine-structural analysis and connexin expression in the retina of a transgenic model of Huntington's disease[ J]. J Comp Neurol, 2004, 479(2): 181-197.Petrasch-Parwez E, Habbes HW, Weickert S, et al. Fine-structural analysis and connexin expression in the retina of a transgenic model of Huntington's disease[ J]. J Comp Neurol, 2004, 479(2): 181-197.
78、Karam A, Tebbe L, Weber C, et al. A novel function of Huntingtin in the cilium and retinal ciliopathy in Huntington's disease mice[ J]. Neurobiol Dis, 2015, 80: 15-28.Karam A, Tebbe L, Weber C, et al. A novel function of Huntingtin in the cilium and retinal ciliopathy in Huntington's disease mice[ J]. Neurobiol Dis, 2015, 80: 15-28.
79、Li M, Yasumura D, Ma AAK, et al. Intravitreal administration of HA- 1077, a ROCK inhibitor, improves retinal function in a mouse model of Huntington disease[ J]. PLoS One, 2013, 8(2): e56026.Li M, Yasumura D, Ma AAK, et al. Intravitreal administration of HA- 1077, a ROCK inhibitor, improves retinal function in a mouse model of Huntington disease[ J]. PLoS One, 2013, 8(2): e56026.
80、Cai W, Zhang K, Li P, et al. Dysfunction of the neurovascular unit in ischemic stroke and neurodegenerative diseases: an aging effect[ J]. Ageing Res Rev, 2017, 34: 77-87.Cai W, Zhang K, Li P, et al. Dysfunction of the neurovascular unit in ischemic stroke and neurodegenerative diseases: an aging effect[ J]. Ageing Res Rev, 2017, 34: 77-87.
81、Yu X , Ji C, Shao A . Neurovascular unit dysfunction and neurodegenerative disorders[ J]. Front Neurosci, 2020, 14: 334.Yu X , Ji C, Shao A . Neurovascular unit dysfunction and neurodegenerative disorders[ J]. Front Neurosci, 2020, 14: 334.
82、Sweeney MD, Kisler K, Montagne A, et al. The role of brain vasculature in neurodegenerative disorders[ J]. Nat Neurosci, 2018, 21(10): 1318- 1331.Sweeney MD, Kisler K, Montagne A, et al. The role of brain vasculature in neurodegenerative disorders[ J]. Nat Neurosci, 2018, 21(10): 1318- 1331.
83、Zlokov ic BV. The blood-brain barrier in health and chronic neurodegenerative disorders[ J]. Neuron, 2008, 57(2): 178-201.Zlokov ic BV. The blood-brain barrier in health and chronic neurodegenerative disorders[ J]. Neuron, 2008, 57(2): 178-201.
84、Kisler K, Nelson AR, Montagne A, et al. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease[ J]. Nat Rev Neurosci, 2017, 18(7): 419-434.Kisler K, Nelson AR, Montagne A, et al. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease[ J]. Nat Rev Neurosci, 2017, 18(7): 419-434.
85、Saido TC, Iwata N. Metabolism of amyloid beta peptide and pathogenesis of Alzheimer 's disease. Towards presymptomatic diagnosis, prevention and therapy[ J]. Neurosci Res, 2006, 54(4): 235- 253.Saido TC, Iwata N. Metabolism of amyloid beta peptide and pathogenesis of Alzheimer 's disease. Towards presymptomatic diagnosis, prevention and therapy[ J]. Neurosci Res, 2006, 54(4): 235- 253.
86、Spires-Jones TL, Attems J, Thal DR. Interactions of pathological proteins in neurodegenerative diseases[ J]. Acta Neuropathol, 2017, 134(2): 187-205Spires-Jones TL, Attems J, Thal DR. Interactions of pathological proteins in neurodegenerative diseases[ J]. Acta Neuropathol, 2017, 134(2): 187-205
87、Sagare AP, Bell RD, Zhao Z, et al. Pericyte loss influences Alzheimerlike neurodegeneration in mice[ J]. Nat Commun, 2013, 4: 2932.Sagare AP, Bell RD, Zhao Z, et al. Pericyte loss influences Alzheimerlike neurodegeneration in mice[ J]. Nat Commun, 2013, 4: 2932.
88、Shi H, Koronyo Y, Rentsendorj A, et al. Identification of early pericyte loss and vascular amyloidosis in Alzheimer's disease retina[ J]. Acta Neuropathol, 2020, 139(5): 813-836.Shi H, Koronyo Y, Rentsendorj A, et al. Identification of early pericyte loss and vascular amyloidosis in Alzheimer's disease retina[ J]. Acta Neuropathol, 2020, 139(5): 813-836.
89、Shi H, Koronyo Y, Fuchs DT, et al. Retinal capillary degeneration and blood-retinal barrier disruption in murine models of Alzheimer's disease[ J]. Acta Neuropathol Commun, 2020, 8(1): 202.Shi H, Koronyo Y, Fuchs DT, et al. Retinal capillary degeneration and blood-retinal barrier disruption in murine models of Alzheimer's disease[ J]. Acta Neuropathol Commun, 2020, 8(1): 202.
90、Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration[ J]. Annu Rev Immunol, 2017, 35: 441-468.Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration[ J]. Annu Rev Immunol, 2017, 35: 441-468.
91、Cuenca N, Fernández-Sánchez L, Campello L, et al. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases[ J]. Prog Retin Eye Res, 2014, 43: 17-75.Cuenca N, Fernández-Sánchez L, Campello L, et al. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases[ J]. Prog Retin Eye Res, 2014, 43: 17-75.
92、Condello C, Yuan P, Schain A, et al. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques[ J]. Nat Commun, 2015, 6: 6176.Condello C, Yuan P, Schain A, et al. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques[ J]. Nat Commun, 2015, 6: 6176.
93、Yeh FL, Wang Y, Tom I, et al. TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia[ J]. Neuron, 2016, 91(2): 328-340.Yeh FL, Wang Y, Tom I, et al. TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia[ J]. Neuron, 2016, 91(2): 328-340.
94、Mazaheri F, Snaidero N, Kleinberger G, et al. TREM2 deficiency impairs chemotaxis and microglial responses to neuronal injury[ J]. EMBO Rep, 2017, 18(7): 1186-1198Mazaheri F, Snaidero N, Kleinberger G, et al. TREM2 deficiency impairs chemotaxis and microglial responses to neuronal injury[ J]. EMBO Rep, 2017, 18(7): 1186-1198
95、Atagi Y, Liu CC, Painter MM, et al. Apolipoprotein E is a ligand for triggering receptor expressed on myeloid cells 2 (TREM2)[ J]. J Biol Chem, 2015, 290(43): 26043-26050.Atagi Y, Liu CC, Painter MM, et al. Apolipoprotein E is a ligand for triggering receptor expressed on myeloid cells 2 (TREM2)[ J]. J Biol Chem, 2015, 290(43): 26043-26050.
96、Kamen LA, Levinsohn J, Swanson J A. Differential association of phosphatidylinositol 3-kinase, SHIP-1, and PTEN with forming phagosomes[ J]. Mol Biol Cell, 2007, 18(7): 2463-2472.Kamen LA, Levinsohn J, Swanson J A. Differential association of phosphatidylinositol 3-kinase, SHIP-1, and PTEN with forming phagosomes[ J]. Mol Biol Cell, 2007, 18(7): 2463-2472.
97、Keren-Shaul H, Spinrad A, Weiner A, et al. A unique microglia type associated with restricting development of alzheimer's disease[ J]. Cell, 2017, 169(7): 1276-1290.e17.Keren-Shaul H, Spinrad A, Weiner A, et al. A unique microglia type associated with restricting development of alzheimer's disease[ J]. Cell, 2017, 169(7): 1276-1290.e17.
98、Heneka MT, Golenbock DT, Latz E. Innate immunity in Alzheimer's disease[ J]. Nat Immunol, 2015, 16(3): 229-236.Heneka MT, Golenbock DT, Latz E. Innate immunity in Alzheimer's disease[ J]. Nat Immunol, 2015, 16(3): 229-236.
99、Heneka MT, Kummer MP, Stutz A, et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice[ J]. Nature, 2013, 493(7434): 674-678.Heneka MT, Kummer MP, Stutz A, et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice[ J]. Nature, 2013, 493(7434): 674-678.
100、Ye L, Huang Y, Zhao L, et al. IL-1β and TNF-α induce neurotoxicity through glutamate production: a potential role for neuronal glutaminase[ J]. J Neurochem, 2013, 125(6): 897-908.Ye L, Huang Y, Zhao L, et al. IL-1β and TNF-α induce neurotoxicity through glutamate production: a potential role for neuronal glutaminase[ J]. J Neurochem, 2013, 125(6): 897-908.
101、Brown GC, Vilalta A. How microglia kill neurons[ J]. Brain Res, 2015, 1628: 288-297.Brown GC, Vilalta A. How microglia kill neurons[ J]. Brain Res, 2015, 1628: 288-297.
102、Kim JY, Kim N, Yenari MA. Mechanisms and potential therapeutic applications of microglial activation after brain injury[ J]. CNS Neurosci Ther, 2015, 21(4): 309-319.Kim JY, Kim N, Yenari MA. Mechanisms and potential therapeutic applications of microglial activation after brain injury[ J]. CNS Neurosci Ther, 2015, 21(4): 309-319.
103、Hansen DV, Hanson JE, Sheng M. Microglia in alzheimer's disease[ J]. J Cell Biol, 2018, 217(2): 459-472.Hansen DV, Hanson JE, Sheng M. Microglia in alzheimer's disease[ J]. J Cell Biol, 2018, 217(2): 459-472.
104、Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia[ J]. Nature, 2017, 541(7638): 481-487.Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia[ J]. Nature, 2017, 541(7638): 481-487.
105、Grimaldi A, Pediconi N, Oieni F, et al. Neuroinflammatory processes, A1 astrocyte activation and protein aggregation in the retina of alzheimer's disease patients, possible biomarkers for early diagnosis[ J]. Front Neurosci, 2019, 13: 925.Grimaldi A, Pediconi N, Oieni F, et al. Neuroinflammatory processes, A1 astrocyte activation and protein aggregation in the retina of alzheimer's disease patients, possible biomarkers for early diagnosis[ J]. Front Neurosci, 2019, 13: 925.
106、Salobrar-García E, Rodrigues-Neves AC, Ramírez AI, et al. Microglial activation in the retina of a triple-transgenic alzheimer's disease mouse model (3xTg-AD) [ J]. Int J Mol Sci, 2020, 21(3): 816.Salobrar-García E, Rodrigues-Neves AC, Ramírez AI, et al. Microglial activation in the retina of a triple-transgenic alzheimer's disease mouse model (3xTg-AD) [ J]. Int J Mol Sci, 2020, 21(3): 816.
107、Grimaldi A, Brighi C, Peruzzi G, et al. Inflammation, neurodegeneration and protein aggregation in the retina as ocular biomarkers for Alzheimer's disease in the 3xTg-AD mouse model[ J]. Cell Death Dis, 2018, 9(6): 685.Grimaldi A, Brighi C, Peruzzi G, et al. Inflammation, neurodegeneration and protein aggregation in the retina as ocular biomarkers for Alzheimer's disease in the 3xTg-AD mouse model[ J]. Cell Death Dis, 2018, 9(6): 685.
108、Saidha S, Al-Louzi O, R atchford JN, et al. Optical coherence tomography reflects brain atrophy in multiple sclerosis: a four-year study[ J]. Ann Neurol, 2015, 78(5): 801-813.Saidha S, Al-Louzi O, R atchford JN, et al. Optical coherence tomography reflects brain atrophy in multiple sclerosis: a four-year study[ J]. Ann Neurol, 2015, 78(5): 801-813.
109、Sotirchos ES, Saidha S. OCT is an alternative to MRI for monitoring MS - YES[ J]. Mult Scler, 2018, 24(6): 701-703.Sotirchos ES, Saidha S. OCT is an alternative to MRI for monitoring MS - YES[ J]. Mult Scler, 2018, 24(6): 701-703.
110、Sabahi M, Joshaghanian A, Dolatshahi M, et al. Modification of glial cell activation through dendritic cell vaccination: promises for treatment of neurodegenerative diseases[ J]. J Mol Neurosci, 2021, 71(7): 1410- 1424.Sabahi M, Joshaghanian A, Dolatshahi M, et al. Modification of glial cell activation through dendritic cell vaccination: promises for treatment of neurodegenerative diseases[ J]. J Mol Neurosci, 2021, 71(7): 1410- 1424.
111、Liu X, Hou D, Lin F, et al. The role of neurovascular unit damage in the occurrence and development of Alzheimer's disease[ J]. Rev Neurosci, 2019, 30(5): 477-484.Liu X, Hou D, Lin F, et al. The role of neurovascular unit damage in the occurrence and development of Alzheimer's disease[ J]. Rev Neurosci, 2019, 30(5): 477-484.
112、Zipser BD, Johanson CE, Gonzalez L, et al. Microvascular injury and blood-brain barrier leakage in Alzheimer's disease[ J]. Neurobiol Aging, 2007, 28(7): 977-986.Zipser BD, Johanson CE, Gonzalez L, et al. Microvascular injury and blood-brain barrier leakage in Alzheimer's disease[ J]. Neurobiol Aging, 2007, 28(7): 977-986.
113、Baksi S, Singh N. α-Synuclein impairs ferritinophagy in the retinal pigment epithelium: implications for retinal iron dyshomeostasis in Parkinson's disease[ J]. Sci Rep, 2017, 7(1): 12843.Baksi S, Singh N. α-Synuclein impairs ferritinophagy in the retinal pigment epithelium: implications for retinal iron dyshomeostasis in Parkinson's disease[ J]. Sci Rep, 2017, 7(1): 12843.
114、Da Mesquita S, Papadopoulos Z, Dykstra T, et al. Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy[ J]. Nature, 2021, 593(7858): 255-260.Da Mesquita S, Papadopoulos Z, Dykstra T, et al. Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy[ J]. Nature, 2021, 593(7858): 255-260.
115、Ding XB, Wang XX, Xia DH, et al. Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson's disease[ J]. Nat Med, 2021, 27(3): 411-418.Ding XB, Wang XX, Xia DH, et al. Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson's disease[ J]. Nat Med, 2021, 27(3): 411-418.
116、Chi H, Chang HY, Sang TK. Neuronal cell death mechanisms in major neurodegenerative diseases[ J]. Int J Mol Sci, 2018, 19(10): 3082.Chi H, Chang HY, Sang TK. Neuronal cell death mechanisms in major neurodegenerative diseases[ J]. Int J Mol Sci, 2018, 19(10): 3082.
117、Fricker M, Tolkovsky AM, Borutaite V, et al.Neuronal Cell Death[ J]. Physiol Rev, 2018, 98(2):813-880.Fricker M, Tolkovsky AM, Borutaite V, et al.Neuronal Cell Death[ J]. Physiol Rev, 2018, 98(2):813-880.
118、Hickman S, Izzy S, Sen P, et al. Microglia in neurodegeneration[ J]. Nat Neurosci, 2018, 21(10): 1359-1369.Hickman S, Izzy S, Sen P, et al. Microglia in neurodegeneration[ J]. Nat Neurosci, 2018, 21(10): 1359-1369.
119、Sadun AA, Bassi CJ. Optic nerve damage in alzheimer's disease[ J]. Ophthalmology, 1990, 97(1): 9-17.Sadun AA, Bassi CJ. Optic nerve damage in alzheimer's disease[ J]. Ophthalmology, 1990, 97(1): 9-17.
120、Syed AB, Armstrong RA, Smith CUM. A quantitative analysis of optic nerve axons in elderly control subjects and patients with Alzheimer's disease[ J]. Folia Neuropathol, 2005, 43(1): 1-6.Syed AB, Armstrong RA, Smith CUM. A quantitative analysis of optic nerve axons in elderly control subjects and patients with Alzheimer's disease[ J]. Folia Neuropathol, 2005, 43(1): 1-6.
121、Masri RA, Grünert U, Martin PR . Analysis of parvocellular and magnocellular visual pathways in human retina[ J]. J Neurosci, 2020, 40(42): 8132-8148.Masri RA, Grünert U, Martin PR . Analysis of parvocellular and magnocellular visual pathways in human retina[ J]. J Neurosci, 2020, 40(42): 8132-8148.
122、Cerquera-Jaramillo MA, Nava-Mesa MO, González-Reyes R E, et al. Visual features in alzheimer's disease: from basic mechanisms to clinical overview[ J]. Neural Plast, 2018, 2018: 2941783.Cerquera-Jaramillo MA, Nava-Mesa MO, González-Reyes R E, et al. Visual features in alzheimer's disease: from basic mechanisms to clinical overview[ J]. Neural Plast, 2018, 2018: 2941783.
123、Wright CE, Drasdo N, Harding GF. Pathology of the optic nerve and visual association areas. Information given by the flash and pattern visual evoked potential, and the temporal and spatial contrast sensitivity function[ J]. Brain, 1987, 110( Pt 1): 107-120.Wright CE, Drasdo N, Harding GF. Pathology of the optic nerve and visual association areas. Information given by the flash and pattern visual evoked potential, and the temporal and spatial contrast sensitivity function[ J]. Brain, 1987, 110( Pt 1): 107-120.
124、Pache, Smeets CH, Gasio PF, et al. Colour vision deficiencies in Alzheimer's disease[ J]. Age Ageing, 2003, 32(4): 422-426.Pache, Smeets CH, Gasio PF, et al. Colour vision deficiencies in Alzheimer's disease[ J]. Age Ageing, 2003, 32(4): 422-426.
125、葛坚, 王宁利.眼科学[M]. 第三版, 人民卫生出版社, 2016: 80.
Ge J, Wang NL. Ophthalmology[M], Third edition, People's Medical Publishing House, 2016:80
葛坚, 王宁利.眼科学[M]. 第三版, 人民卫生出版社, 2016: 80.
Ge J, Wang NL. Ophthalmology[M], Third edition, People's Medical Publishing House, 2016:80
126、Vujosevic S, Parra M M, Hartnett M E, et al. Optical coherence tomography as retinal imaging biomarker of neuroinflammation/ neurodegeneration in systemic disorders in adults and children[ J]. Eye (Lond), 2023, 37(2): 203-219.Vujosevic S, Parra M M, Hartnett M E, et al. Optical coherence tomography as retinal imaging biomarker of neuroinflammation/ neurodegeneration in systemic disorders in adults and children[ J]. Eye (Lond), 2023, 37(2): 203-219.
127、Ochi H, Fujihara K. Demyelinating diseases in Asia[ J]. Curr Opin Neurol, 2016, 29(3): 222-228.Ochi H, Fujihara K. Demyelinating diseases in Asia[ J]. Curr Opin Neurol, 2016, 29(3): 222-228.
128、Forsthuber TG, Cimbora DM, Ratchford JN, et al. B cell-based therapies in CNS autoimmunity: differentiating CD19 and CD20 as therapeutic targets[ J]. Ther Adv Neurol Disord, 2018, 11: 1756286418761697.Forsthuber TG, Cimbora DM, Ratchford JN, et al. B cell-based therapies in CNS autoimmunity: differentiating CD19 and CD20 as therapeutic targets[ J]. Ther Adv Neurol Disord, 2018, 11: 1756286418761697.
129、Dargahi N, K atsara M, Tselios T, et al. Multiple sclerosis: immunopathology and treatment update[ J]. Brain Sci, 2017, 7(7): 78.Dargahi N, K atsara M, Tselios T, et al. Multiple sclerosis: immunopathology and treatment update[ J]. Brain Sci, 2017, 7(7): 78.
130、Bramow S, Frischer JM, Lassmann H, et al. Demyelination versus remyelination in progressive multiple sclerosis[ J]. Brain, 2010, 133(10): 2983-2998.Bramow S, Frischer JM, Lassmann H, et al. Demyelination versus remyelination in progressive multiple sclerosis[ J]. Brain, 2010, 133(10): 2983-2998.
131、Blank T, Prinz M. Type I interferon pathway in CNS homeostasis and neurological disorders[ J]. Glia, 2017, 65(9): 1397-1406.Blank T, Prinz M. Type I interferon pathway in CNS homeostasis and neurological disorders[ J]. Glia, 2017, 65(9): 1397-1406.
132、中国免疫学会神经免疫分会. 中国视神经脊髓炎谱系疾病诊 断与治疗指南(2021版)[ J]. 中国神经免疫学和神经病学杂志, 2021, 28(6): 423-436.
Neuroimmunology Branch of Chinese Society of Immunology. Chinese guidelines for diagnosis and treatment of neuromyelitis optica spectrum diseases(2021 edition)[ J]. Chinese Journal of Neuroimmunology and Neurology, 2021, 28(6): 423-436.
中国免疫学会神经免疫分会. 中国视神经脊髓炎谱系疾病诊 断与治疗指南(2021版)[ J]. 中国神经免疫学和神经病学杂志, 2021, 28(6): 423-436.
Neuroimmunology Branch of Chinese Society of Immunology. Chinese guidelines for diagnosis and treatment of neuromyelitis optica spectrum diseases(2021 edition)[ J]. Chinese Journal of Neuroimmunology and Neurology, 2021, 28(6): 423-436.
133、Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis[ J]. Lancet, 2004, 364(9451): 2106-2112.Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis[ J]. Lancet, 2004, 364(9451): 2106-2112.
134、Wingerchuk DM, Lennon VA, Lucchinetti CF, et al. The spectrum of neuromyelitis optica[ J]. Lancet Neurol, 2007, 6(9): 805-815.Wingerchuk DM, Lennon VA, Lucchinetti CF, et al. The spectrum of neuromyelitis optica[ J]. Lancet Neurol, 2007, 6(9): 805-815.
135、Marignier R, Hacohen Y, Cobo-Calvo A, et al. Myelin-oligodendrocyte glycoprotein antibody-associated disease[ J]. Lancet Neurol, 2021, 20(9): 762-772.Marignier R, Hacohen Y, Cobo-Calvo A, et al. Myelin-oligodendrocyte glycoprotein antibody-associated disease[ J]. Lancet Neurol, 2021, 20(9): 762-772.
1、陶锐,陈志斌,周育等.阿尔茨海默病视网膜相关研究进展[J].中国神经精神疾病杂志,2023,49(06):375-379.TAO Rui, CHEN Zhibin, ZHOU Yu, et al. Research progress of retina-related in Alzheimer disease[J]. Chin J Nerv Ment Dis, 2023, 49(6): 375-379.
2、陈宁宁,洪武.间歇性禁食的抗抑郁机制研究进展[J].中国神经精神疾病杂志,2023,49(7):441-445.
3、何中慧,张莹,姜宏佺.反义寡核苷酸技术治疗肌萎缩侧索硬化研究进展[J].中国神经精神疾病杂志,2023,49(05):291-295.HE Zhonghui, ZHANG Ying, JIANG Hongquan. Recent progress in the treatment of amyotrophic lateral sclerosis with antisense oligonucleotides[J]. Chin J Nerv Ment Dis, 2023, 49(5): 291-295.
1、国家自然科学基金 (82171404);中山大学科研领军人才培育计划项目 (22yklj04);国家重点实验室 - 开放课题 (2021KF05);广东省自然科学基金 (2023A1515011529)。
This work was supported by National Natural Science Foundation of China(82171404); Research Leading Talent Training Program of Sun Yat-sen University(22yklj04); State Key Laboratory-Open Project (2021KF05); The Natural Science Foundation of Guangdong Province(2023A1515011529).()
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
中山眼科



中山大学
目录