1、Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research[ J]. Nat Rev Genet, 2018, 19(11): 671-687.Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research[ J]. Nat Rev Genet, 2018, 19(11): 671-687.
2、Wu Q, Liu J, Wang X, et al. Organ-on-a-chip: recent breakthroughs and future prospects[ J]. Biomed Eng Online, 2020, 19(1): 9.Wu Q, Liu J, Wang X, et al. Organ-on-a-chip: recent breakthroughs and future prospects[ J]. Biomed Eng Online, 2020, 19(1): 9.
3、Corrò C, Novellasdemunt L, Li VSW. A brief history of organoids[ J]. Am J Physiol Cell Physiol, 2020, 319(1): C151-C165.Corrò C, Novellasdemunt L, Li VSW. A brief history of organoids[ J]. Am J Physiol Cell Physiol, 2020, 319(1): C151-C165.
4、Hayashi R , Ishikawa Y, Sasamoto Y, et al. Co-ordinated ocular development from human iPS cells and recovery of corneal function[ J]. Nature, 2016, 531(7594): 376-380.Hayashi R , Ishikawa Y, Sasamoto Y, et al. Co-ordinated ocular development from human iPS cells and recovery of corneal function[ J]. Nature, 2016, 531(7594): 376-380.
5、Foster JW, Wahlin K, Adams SM, et al. Cornea organoids from human induced pluripotent stem cells[ J]. Sci Rep, 2017, 7: 41286.Foster JW, Wahlin K, Adams SM, et al. Cornea organoids from human induced pluripotent stem cells[ J]. Sci Rep, 2017, 7: 41286.
6、Susaimanickam PJ, Maddileti S, Pulimamidi VK, et al. Generating minicorneal organoids from human induced pluripotent stem cells[ J]. Development, 2017, 144(13): 2338-2351.Susaimanickam PJ, Maddileti S, Pulimamidi VK, et al. Generating minicorneal organoids from human induced pluripotent stem cells[ J]. Development, 2017, 144(13): 2338-2351.
7、Watanabe S, Hayashi R, Sasamoto Y, et al. Human iPS cells engender corneal epithelial stem cells with holoclone-forming capabilities[ J]. iScience, 2021, 24(6): 102688.Watanabe S, Hayashi R, Sasamoto Y, et al. Human iPS cells engender corneal epithelial stem cells with holoclone-forming capabilities[ J]. iScience, 2021, 24(6): 102688.
8、Van Meenen J, Ní Dhubhghaill S, Van den Bogerd B, et al. An overview of advanced in vitro corneal models: implications for pharmacological testing[ J/OL]. Tissue Eng Part B Rev, 2021, Epub ahead of print.Van Meenen J, Ní Dhubhghaill S, Van den Bogerd B, et al. An overview of advanced in vitro corneal models: implications for pharmacological testing[ J/OL]. Tissue Eng Part B Rev, 2021, Epub ahead of print.
9、Bannier-Hélaou?t M, Post Y, Korving J, et al. Exploring the human lacrimal gland using organoids and single-cell sequencing[ J]. Cell Stem Cell, 2021, 28(7): 1221-1232.e7.Bannier-Hélaou?t M, Post Y, Korving J, et al. Exploring the human lacrimal gland using organoids and single-cell sequencing[ J]. Cell Stem Cell, 2021, 28(7): 1221-1232.e7.
10、Jeong SY, Choi WH, Jeon SG, et al. Establishment of functional epithelial organoids from human lacrimal glands[ J]. Stem Cell Res Ther, 2021, 12(1): 247.Jeong SY, Choi WH, Jeon SG, et al. Establishment of functional epithelial organoids from human lacrimal glands[ J]. Stem Cell Res Ther, 2021, 12(1): 247.
11、Li X, Zhang L, Tang F, et al. Retinal organoids: cultivation, differentiation, and transplantation[ J]. Front Cell Neurosci, 2021, 15: 638439.Li X, Zhang L, Tang F, et al. Retinal organoids: cultivation, differentiation, and transplantation[ J]. Front Cell Neurosci, 2021, 15: 638439.
12、罗子明, 葛坚. 人视网膜类器官培养技术的进步与挑战[ J]. 中华实验眼科杂志, 2020, 38(10): 809-812.
LUO Ziming, GE Jian. Current research and challenge of human retinal organoid differentiation[ J]. Chinese Journal of Experimental Ophthalmology, 2020, 38(10): 809-812.罗子明, 葛坚. 人视网膜类器官培养技术的进步与挑战[ J]. 中华实验眼科杂志, 2020, 38(10): 809-812.
LUO Ziming, GE Jian. Current research and challenge of human retinal organoid differentiation[ J]. Chinese Journal of Experimental Ophthalmology, 2020, 38(10): 809-812.
13、Wagstaff PE, Ten Asbroek ALMA, Ten Brink JB, et al. An alternative approach to produce versatile retinal organoids with accelerated ganglion cell development[ J]. Sci Rep, 2021, 11(1): 1101.Wagstaff PE, Ten Asbroek ALMA, Ten Brink JB, et al. An alternative approach to produce versatile retinal organoids with accelerated ganglion cell development[ J]. Sci Rep, 2021, 11(1): 1101.
14、Vielle A, Park YK, Secora C, et al. Organoids for the study of retinal development and developmental abnormalities[ J]. Front Cell Neurosci, 2021, 15: 667880.Vielle A, Park YK, Secora C, et al. Organoids for the study of retinal development and developmental abnormalities[ J]. Front Cell Neurosci, 2021, 15: 667880.
15、McNerney C, Johnston RJ Jr. Thyroid hormone signaling specifies cone photoreceptor subtypes during eye development: Insights from model organisms and human stem cell-derived retinal organoids[ J]. Vitam Horm, 2021, 116: 51-90.McNerney C, Johnston RJ Jr. Thyroid hormone signaling specifies cone photoreceptor subtypes during eye development: Insights from model organisms and human stem cell-derived retinal organoids[ J]. Vitam Horm, 2021, 116: 51-90.
16、Collin J, Queen R, Zerti D, et al. Deconstructing retinal organoids: single cell RNA-Seq reveals the cellular components of human pluripotent stem cell-derived retina[ J]. Stem Cells, 2019, 37(5): 593-598.Collin J, Queen R, Zerti D, et al. Deconstructing retinal organoids: single cell RNA-Seq reveals the cellular components of human pluripotent stem cell-derived retina[ J]. Stem Cells, 2019, 37(5): 593-598.
17、Liu H, Hua ZQ, Jin ZB. Modeling human retinoblastoma using embryonic stem cell-derived retinal organoids[ J]. STAR Protoc, 2021, 2(2): 100444.Liu H, Hua ZQ, Jin ZB. Modeling human retinoblastoma using embryonic stem cell-derived retinal organoids[ J]. STAR Protoc, 2021, 2(2): 100444.
18、Li YP, Deng WL, Jin ZB. Modeling retinitis pigmentosa through patientderived retinal organoids[ J]. STAR Protoc, 2021, 2(2):100438.Li YP, Deng WL, Jin ZB. Modeling retinitis pigmentosa through patientderived retinal organoids[ J]. STAR Protoc, 2021, 2(2):100438.
19、Achberger K, Probst C, Haderspeck J, et al. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform[ J]. Elife, 2019, 8: 46188.Achberger K, Probst C, Haderspeck J, et al. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform[ J]. Elife, 2019, 8: 46188.
20、Aasen DM, Vergara MN. New drug discovery paradigms for retinal diseases: a focus on retinal organoids[ J]. J Ocul Pharmacol Ther, 2020, 36(1): 18-24.Aasen DM, Vergara MN. New drug discovery paradigms for retinal diseases: a focus on retinal organoids[ J]. J Ocul Pharmacol Ther, 2020, 36(1): 18-24.
21、Cora V, Haderspeck J, Antkowiak L, et al. A cleared view on retinal organoids[ J]. Cells, 2019, 8(5): 391.Cora V, Haderspeck J, Antkowiak L, et al. A cleared view on retinal organoids[ J]. Cells, 2019, 8(5): 391.
22、Ito SI, Onishi A, Takahashi M. Chemically-induced photoreceptor degeneration and protection in mouse iPSC-derived three-dimensional retinal organoids[ J]. Stem Cell Res, 2017, 24: 94-101.Ito SI, Onishi A, Takahashi M. Chemically-induced photoreceptor degeneration and protection in mouse iPSC-derived three-dimensional retinal organoids[ J]. Stem Cell Res, 2017, 24: 94-101.
23、Miltner AM, Torre AL. Retinal ganglion cell replacement: current status and challenges ahead[ J]. Dev Dyn, 2019, 248(1): 118-128.Miltner AM, Torre AL. Retinal ganglion cell replacement: current status and challenges ahead[ J]. Dev Dyn, 2019, 248(1): 118-128.
24、Eastlake K, Wang W, Jayaram H, et al. Phenotypic and functional characterization of müller glia isolated from induced pluripotent stem cell-derived retinal organoids: improvement of retinal ganglion cell function upon transplantation[ J]. Stem Cells Transl Med, 2019, 8(8): 775-784.Eastlake K, Wang W, Jayaram H, et al. Phenotypic and functional characterization of müller glia isolated from induced pluripotent stem cell-derived retinal organoids: improvement of retinal ganglion cell function upon transplantation[ J]. Stem Cells Transl Med, 2019, 8(8): 775-784.
25、余超, 李秋玉, 邵毅. 光感受器移植在视网膜退行性疾病中的应用研究进展[ J]. 国际眼科杂志, 2021, 21(7): 1175-1178.
YU Chao, LI Qiuyu, SHAO Yi. Research progress of photoreceptor transplantation in retinal degenerative diseases[ J].International Eye Science, 2021, 21(7): 1175-1178.余超, 李秋玉, 邵毅. 光感受器移植在视网膜退行性疾病中的应用研究进展[ J]. 国际眼科杂志, 2021, 21(7): 1175-1178.
YU Chao, LI Qiuyu, SHAO Yi. Research progress of photoreceptor transplantation in retinal degenerative diseases[ J].International Eye Science, 2021, 21(7): 1175-1178.
26、McLelland BT, Lin B, Mathur A, et al. Transplanted hESC-derived retina organoid sheets differentiate, integrate, and improve visual function in retinal degenerate rats[ J]. Invest Ophthalmol Vis Sci, 2018, 59(6): 2586-2603.McLelland BT, Lin B, Mathur A, et al. Transplanted hESC-derived retina organoid sheets differentiate, integrate, and improve visual function in retinal degenerate rats[ J]. Invest Ophthalmol Vis Sci, 2018, 59(6): 2586-2603.
27、杜雨馨, 刘依宗, 阎飞跃, 等. CRISPR/Cas9技术介导CrxiCreERT2红色荧光报告人胚胎干细胞系的构建及其三维视网膜类器官培养[ J]. 中华实验眼科杂志, 2021, 39(5): 388-397.
DU Yuxin, LIU Yizong, YAN Feiyue, et al. Construction of CrxiCreERT2 fluorescent reporter human embryonic stem cells by CRISPR/Cas9 technology and 3D retinal organoid culture[ J]. Chinese Journal of Experimental Ophthalmology, 2021, 39(5): 388-397.杜雨馨, 刘依宗, 阎飞跃, 等. CRISPR/Cas9技术介导CrxiCreERT2红色荧光报告人胚胎干细胞系的构建及其三维视网膜类器官培养[ J]. 中华实验眼科杂志, 2021, 39(5): 388-397.
DU Yuxin, LIU Yizong, YAN Feiyue, et al. Construction of CrxiCreERT2 fluorescent reporter human embryonic stem cells by CRISPR/Cas9 technology and 3D retinal organoid culture[ J]. Chinese Journal of Experimental Ophthalmology, 2021, 39(5): 388-397.
28、V?lkner M, Pavlou M, Büning H, et al. Optimized adeno-associated virus vectors for efficient transduction of human retinal organoids[ J]. Hum Gene Ther, 2021, 32(13-14): 694-706.V?lkner M, Pavlou M, Büning H, et al. Optimized adeno-associated virus vectors for efficient transduction of human retinal organoids[ J]. Hum Gene Ther, 2021, 32(13-14): 694-706.
29、Huang FL, Russell P, Kuwabara T. Fine structure of lentoid bodies derived from normal and cataractous mouse lenses[ J]. Exp Eye Res, 1980, 31(5): 535-541.Huang FL, Russell P, Kuwabara T. Fine structure of lentoid bodies derived from normal and cataractous mouse lenses[ J]. Exp Eye Res, 1980, 31(5): 535-541.
30、Yang C, Yang Y, Brennan L, et al. Efficient generation of lens progenitor cells and lentoid bodies from human embryonic stem cells in chemically defined conditions[ J]. FASEB J, 2010, 24(9): 3274-3283.Yang C, Yang Y, Brennan L, et al. Efficient generation of lens progenitor cells and lentoid bodies from human embryonic stem cells in chemically defined conditions[ J]. FASEB J, 2010, 24(9): 3274-3283.
31、Lin H, Ouyang H, Zhu J, et al. Lens regeneration using endogenous stem cells with gain of visual function[ J]. Nature, 2016, 531(7594): 323-328.Lin H, Ouyang H, Zhu J, et al. Lens regeneration using endogenous stem cells with gain of visual function[ J]. Nature, 2016, 531(7594): 323-328.
32、Fu Q, Qin Z, Jin X, et al. Generation of functional lentoid bodies from human induced pluripotent stem cells derived from urinary cells[ J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 517-527.Fu Q, Qin Z, Jin X, et al. Generation of functional lentoid bodies from human induced pluripotent stem cells derived from urinary cells[ J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 517-527.
33、Fu Q, Qin Z, Zhang L, et al. A new long noncoding RNA ALB regulates autophagy by enhancing the transformation of LC3BI to LC3BII during human lens development[ J]. Mol Ther Nucleic Acids, 2017, 9: 207-217.Fu Q, Qin Z, Zhang L, et al. A new long noncoding RNA ALB regulates autophagy by enhancing the transformation of LC3BI to LC3BII during human lens development[ J]. Mol Ther Nucleic Acids, 2017, 9: 207-217.
34、Han C, Li J, Wang C, et al. Wnt5a contributes to the differentiation of human embryonic stem cells into lentoid bodies through the noncanonical WNT/JNK signaling pathway[ J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3449-3460.Han C, Li J, Wang C, et al. Wnt5a contributes to the differentiation of human embryonic stem cells into lentoid bodies through the noncanonical WNT/JNK signaling pathway[ J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3449-3460.
35、Qin Z, Zhang L, Lyu D, et al. Opacification of lentoid bodies derived from human induced pluripotent stem cells is accelerated by hydrogen peroxide and involves protein aggregation[ J]. J Cell Physiol, 2019, 234(12): 23750-23762.Qin Z, Zhang L, Lyu D, et al. Opacification of lentoid bodies derived from human induced pluripotent stem cells is accelerated by hydrogen peroxide and involves protein aggregation[ J]. J Cell Physiol, 2019, 234(12): 23750-23762.
36、Murphy P, Kabir MH, Srivastava T, et al. Light-focusing human microlenses generated from pluripotent stem cells model lens development and drug-induced cataract in vitro[ J]. Development, 2018, 145(1): dev155838.Murphy P, Kabir MH, Srivastava T, et al. Light-focusing human microlenses generated from pluripotent stem cells model lens development and drug-induced cataract in vitro[ J]. Development, 2018, 145(1): dev155838.
37、Lyu D, Zhang L, Qin Z, et al. Modeling congenital cataract in vitro using patient-specific induced pluripotent stem cells[ J]. NPJ Regen Med, 2021, 6(1): 60.Lyu D, Zhang L, Qin Z, et al. Modeling congenital cataract in vitro using patient-specific induced pluripotent stem cells[ J]. NPJ Regen Med, 2021, 6(1): 60.
38、Bennet D, Estlack Z, Reid T, et al. A microengineered human corneal epithelium-on-a-chip for eye drops mass transport evaluation[ J]. Lab Chip, 2018, 18(11): 1539-1551.Bennet D, Estlack Z, Reid T, et al. A microengineered human corneal epithelium-on-a-chip for eye drops mass transport evaluation[ J]. Lab Chip, 2018, 18(11): 1539-1551.
39、Seo J, Byun WY, Alisafaei F, et al. Multiscale reverse engineering of the human ocular surface[ J]. Nat Med, 2019, 25(8): 1310-1318.Seo J, Byun WY, Alisafaei F, et al. Multiscale reverse engineering of the human ocular surface[ J]. Nat Med, 2019, 25(8): 1310-1318.
40、Lu Q, Yin H, Grant MP, et al. An in vitro model for the ocular surface and tear film system[ J]. Sci Rep, 2017, 7(1): 6163.Lu Q, Yin H, Grant MP, et al. An in vitro model for the ocular surface and tear film system[ J]. Sci Rep, 2017, 7(1): 6163.
41、Chung M, Lee S, Lee BJ, et al. Wet-AMD on a chip: modeling outer blood-retinal barrier in vitro[ J]. Adv Healthc Mater, 2018.Chung M, Lee S, Lee BJ, et al. Wet-AMD on a chip: modeling outer blood-retinal barrier in vitro[ J]. Adv Healthc Mater, 2018.
42、Yeste J, García-Ramírez M, Illa X, et al. A compartmentalized microfluidic chip with crisscross microgrooves and electrophysiological electrodes for modeling the blood-retinal barrier[ J]. Lab Chip, 2017, 18(1): 95-105.Yeste J, García-Ramírez M, Illa X, et al. A compartmentalized microfluidic chip with crisscross microgrooves and electrophysiological electrodes for modeling the blood-retinal barrier[ J]. Lab Chip, 2017, 18(1): 95-105.
43、Peng Z, Zhou L, Wong JKW, et al. Eye-on-a-chip (EOC) models and their role in the future of ophthalmic drug discovery[ J]. Expert Rev Ophthalmol, 2020,15(5): 259-261.Peng Z, Zhou L, Wong JKW, et al. Eye-on-a-chip (EOC) models and their role in the future of ophthalmic drug discovery[ J]. Expert Rev Ophthalmol, 2020,15(5): 259-261.
44、Norden C, Lecaudey V. Collective cell migration: general themes and new paradigms[ J]. Curr Opin Genet Dev, 2019, 57: 54-60.Norden C, Lecaudey V. Collective cell migration: general themes and new paradigms[ J]. Curr Opin Genet Dev, 2019, 57: 54-60.
45、Mishra S, Pe?a JS, Redenti S, et al. A novel electro-chemotactic approach to impact the directional migration of transplantable retinal progenitor cells[ J]. Exp Eye Res, 2019, 185: 107688.Mishra S, Pe?a JS, Redenti S, et al. A novel electro-chemotactic approach to impact the directional migration of transplantable retinal progenitor cells[ J]. Exp Eye Res, 2019, 185: 107688.
46、Di Zazzo A, Lee SM, Sung J, et al. Variable responses to corneal grafts: insights from immunology and systems biology[ J]. J Clin Med, 2020, 9(2): 586.Di Zazzo A, Lee SM, Sung J, et al. Variable responses to corneal grafts: insights from immunology and systems biology[ J]. J Clin Med, 2020, 9(2): 586.
47、Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine[ J]. Nat Rev Mol Cell Biol, 2020, 21(10): 571-584.Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine[ J]. Nat Rev Mol Cell Biol, 2020, 21(10): 571-584.
48、邵毅, 周琼. 糖尿病视网膜病变诊治规范——2018年美国眼科学会临床指南解读[ J]. 眼科新进展, 2019, 39(6): 501-506.
SHAO Yi, ZHOU Qiong. Interpretation of clinical guidelines for diabetic retinopathy of the American Academy of Ophthalmology 2018[ J]. Recent Advances in Ophthalmology, 2019, 39(6): 501-506.邵毅, 周琼. 糖尿病视网膜病变诊治规范——2018年美国眼科学会临床指南解读[ J]. 眼科新进展, 2019, 39(6): 501-506.
SHAO Yi, ZHOU Qiong. Interpretation of clinical guidelines for diabetic retinopathy of the American Academy of Ophthalmology 2018[ J]. Recent Advances in Ophthalmology, 2019, 39(6): 501-506.
49、Wright CB, Becker SM, Low LA, et al. Improved ocular tissue models and eye-on-a-chip technologies will facilitate ophthalmic drug development[ J]. J Ocul Pharmacol Ther, 2020, 36(1): 25-29.Wright CB, Becker SM, Low LA, et al. Improved ocular tissue models and eye-on-a-chip technologies will facilitate ophthalmic drug development[ J]. J Ocul Pharmacol Ther, 2020, 36(1): 25-29.
50、Tang H, Abouleila Y, Si L, et al. Human organs-on-chips for virology[ J]. Trends Microbiol, 2020, 28(11): 934-946.Tang H, Abouleila Y, Si L, et al. Human organs-on-chips for virology[ J]. Trends Microbiol, 2020, 28(11): 934-946.