Objective: Due to the limitations of small imaging field of view of in vivo confocal microscopy (IVCM) or the incapability of cellular imaging of traditional optical coherence tomography (OCT) in human corneal imaging, this study was designed to develop a novel high-resolution in vivo human corneal imaging system based on full-field OCT (FFOCT). Methods: The FFOCT system utilized a high numerical aperture air immersion microscope objective and a high-speed area array CMOS camera with two-phase modulation image processing algorithm to achieve high-speed high-resolution non-contact imaging of human cornea. To verify its feasibility, in vivo cornea imaging at different depth was performed on a healthy human subject. Results: The FFOCT system achieved a theoretical lateral imaging resolution of 1.7 μm, an imaging field of view of 1.26 mm×1.26 mm, and an imaging rate of 275 Hz/s. High-resolution FFOCT images of the main structural layers of cornea were achieved by imaging a healthy human cornea in vivo with this system in a non-contact way. Conclusion: The FFOCT human corneal imaging system combines the advantages of the non-contractness and the large imaging field of view of traditional OCT with the cellular lateral resolution of IVCM, potentially providing a new imaging system for the research and clinical diagnosis and treatment of corneal diseases.