论著

白内障人群角膜屈光力的分布及相关因素分析

Distribution and related factors analysis on corneal refractive power in cataract patients

:837-844
 
目的:探讨白内障人群角膜屈光力(corneal refractive power,CRP)的分布特点及与眼生物学参数的相关因素分析。方法:回顾性横断面研究福州眼科医院2019年3月至2022年7月就诊的40岁以上白内障人群共23035眼,使用OA-2000测量其眼轴(axial length,AL)、CRP、前房深度(anterior chamber depth,ACD)、晶状体厚度(lens thickness,LT)、角膜水平直径即白到白(white-to-white,W T W)、中央角膜厚度(central corneal thickness,CCT)。绘制各眼生物学参数及年龄Spearman相关性热力图,绘制CRP与AL、CRP与WTW散点拟合图。将CRP与上述参数及年龄进行Spearman相关性分析,分段数据的线性关系使用Pearson分析及线性回归分析。结果:白内障人群CRP为(44.36±1.52)D,在总体数据中CRP与AL为非线性相关;但在分段数据中存在线性相关:当AL≤25.06 mm,CRP与AL负线性相关(R2 =0.397,P<0.001);当AL>25.06 mm,CRP与AL正线性相关(R2 =0.045,P<0.001);无论AL长短,CRP与WTW、CCT均呈负相关。在总体数据中,CRP与WTW也存在非线性关系;但在分段数据中存在线性相关:当10.52 mm≤WTW≤12.46 mm,CRP与WTW负线性相关(R2 =0.149,P<0.001),并与AL、ACD、CCT呈负相关。结论:CRP与AL、WTW呈非线性相关,使用CRP优化计算人工晶状体(intraocular lens,IOL)屈光力时需适当考虑AL、WTW与CRP的相关性。
Objective: To investigate the distribution characteristics of corneal refractive power (CRP), and analyze the correlation between corneal refractive power and ocular biometric parameters in cataract patients. Methods: A retrospective cross-sectional study was conducted on 2,3035 eyes of cataract patients over 40 years old, who visited Fuzhou Eye Hospital during the period between March 2019 and July 2022. The subjects' examination results of axial length (AL), corneal refractive power (CRP), anterior chamber depth (ACD), lens thickness (LT), horizontal corneal diameter (WTW), central corneal thickness (CCT) were measured by OA-2000. Spearman correlation thermograms of bilological parameters and age for each eyes were worked out. The plot scatter fitting plots of CRP and AL, CRP and WTW were made. Spearman correlation analysis was made among CRP, above-mentioned parameters and age. Linear relationships of the segmented data were analyzed with Pearson and linear regression analysis. Results: In the cataract patients, CRP was (44.36 ± 1.52) D. There was a non-linear correlation between CRP and AL in the total data. However, there was a linear relationship in the segmented data. When AL ≤ 25.06 mm, CRP was negatively linearly correlated with AL (R2 =0.397, P<0.001). When AL>25.06 mm, CRP was weakly positively correlated with AL (R2 =0.045, P<0.001). Regardless of the length of AL, CRP was negatively correlated with WTW and CCT. There was also a nonlinear relationship between CRP and WTW in the total data. But there was a linear correlation in the segmented data.When 10.52 mm ≤ WTW ≤ 12.46 mm, the negative linear correlation was found between CRP and WTW (R2 =0.149, P<0.001), while there was negative correlation among CRP, AL, ACD, and CCT. Conclusion: There is a non-linear correlation among CRP, AL and WTW. To optimize the calculation of intraocular lens (IOL) refractive power with CRP, it is necessary to consider the correlation between AL, WTW, and CRP.
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
中山眼科



中山大学