病例报告

异基因造血干细胞移植后并发霜样树枝状视网膜血管炎一例

Frosted branch angiitis after allogeneic hematopoietic stem cell transplantation: a case report

:436-440
 
霜样树枝状视网膜血管炎是一种少见的急性视网膜血管炎,多发生于健康青少年,病因不明,可能与病毒感染有关,糖皮质激素治疗有效,预后良好;也可继发于感染性疾病和全身疾病,预后较差。该文回顾了一例继发于异基因造血干细胞移植后的霜样树枝状视网膜血管炎,治疗后病情缓解,预后良好。
Frosted branch angiitis (FBA) is a rare acute retinal vasculitis which often occurs in healthy adolescents. The etiology of FBA is unknown, but its occurrence may be related to viral infection, glucocorticoid therapy is effective and has a good prognosis. FBA may also be secondary to infectious and systemic diseaseswith poor prognosis. In this paper, we reviewed a case of FBA secondary to allogeneic hematopoietic stem cell transplantation, which was relieved after treatment and had a good prognosis.
综述

间充质干细胞在眼表疾病治疗中的应用

Application of mesenchymal stem cells in the treatment of ocular diseases

:299-305
 
间充质干细胞由于其独特的自我更新和多向分化能力,成为了一种替代无效的常规治疗的新兴治疗方法。间充质干细胞通过免疫调节、促修复、抗新生血管机制和细胞替代作用在眼表疾病中发挥作用,而不同来源的间充质干细胞其作用机制也不完全相同。迄今为止,已有8项注册的间充质干细胞治疗的临床试验应用于干眼、角膜烧伤、圆锥角膜等眼表疾病。
Due to its unique self-renewal and multi-directional differentiation capabilities, mesenchymal stem cells (MSCs) have become an emerging therapy that replaces of ineffective conventional options in treating multiple diseases. It plays an important role in ocular surface illnesses through a variety of functions, including immunoregulation, promoting repairing, anti-angiogenesis mechanisms, and cell replacement. MSCs from different sources have different mechanisms.So far, 8 registered clinical trials of MSCs therapy have been applied to treat dry eye, ocular burn, keratoconus and other ocular surface diseases.
“眼科再生医学”专题

内源性干细胞在晶状体再生修复中的应用及展望

Application and prospect of endogenous stem cells in lens regeneration and repair

:360-373
 
内源性干细胞在组织的损伤修复过程中组织相容性好、致瘤风险低,相较于外源性干细胞具有不需要体外扩增和培养、疾病传播风险低的优点,在细胞治疗领域具有显著优势。现在已经有多种使用内源性干细胞进行疾病治疗的成熟方式,应用领域包括了全身各种器质性和功能性疾病。在眼组织中,晶状体具有终生生长的能力且便于观察,是实现再生修复的突破点。哺乳动物中晶状体再生的实现有赖于晶状体内源性干细胞的定位和改良手术方式,以保留晶状体干细胞,并创造适合晶状体再生的微环境。对再生后的晶状体蛋白质组成分析,发现其类似成熟晶状体,而非胚胎期的晶状体,提示晶状体再生的调控与胚胎期的诱导发生并不相同;而调控晶状体再生的策略不仅着眼于干细胞的激活和正确分化的诱导,对其上皮间质转化过程也需要进行调控。在未来,为将晶状体再生的经验应用于其他眼组织中,动员内源性干细胞并促进其生长,可以添加细胞有效成分,比如外泌体、线粒体、小分子化合物等,模拟细胞应激;此外,还可以通过手术或生物材料辅助,恢复晶状体结构和环境。
Endogenous stem cells have significant advantages in cell therapy for excellent histocompatibility, low tumorigenicity risk, unnecessity for in vitro expansion and culture, and low disease transmission risk. There have been some applications for endogenous stem cells in treating diseases, targeting some organic and functional diseases throughout the body. In ocular tissue, the lens is a breakthrough for regenerative therapy due to its potential to grow throughout life and observation accessibility. Achieving lens regeneration in adult mammals attributes to some prerequisites. Firstly, the location of endogenous stem cells in the lens has been identified. Then, surgical approaches have been advanced to preserve lens stem cells and create a microenvironment suitable for lens regeneration. Protein compositional analysis of the regenerated lens reveals that it is similar to a mature lens rather than an embryonic lens, suggesting that the regulation of lens regeneration is not the same as the induction of embryonic onset. The strategy for regulating lens regeneration needs to focus not only on the activation and proper differentiation of stem cells but also on regulating the process of epithelial mesenchymal transition (EMT). In the future, in order to apply the experiences of lens regeneration to other ocular tissues, to mobilize endogenous cells and promote their growth, some strategies could be used. These strategies include mimicking cellular stress via the addition of cellular active ingredients, such as exosome, mitochondria, and small molecular compounds. Additionally, we can also try to restore lens tissue structure and microenvironment through surgical or biomaterial assistance.
“筑梦·铸人”专题

视网膜神经节细胞特异的报告基因干细胞系构建及其应用

Establishment and application of a retinal ganglion cell-specific reporter stem cell line

:245-254
 
目的:建立能驱动GFP在视网膜神经节细胞(retinal ganglion cell,RGC)中特异性表达的小鼠胚胎干细胞系。方法:通过同源重组的方式建立Brn3b-GFP敲入的小鼠胚胎干细胞系(Brn3b-GFP ESC),利用3D培养将其诱导成视网膜类器官检测GFP表达的细胞特异性,再用流式细胞分选富集GFP阳性RGC,采用玻璃体腔注射的方式将GFP阳性RGC移植到健康小鼠和NMDA损伤模型小鼠眼中探索该细胞的应用价值。结果:Brn3b-GFP ESC经3D视网膜诱导培养后在RGC中特异性表达GFP,将这些GFP阳性RGC移植到两种小鼠中2周后能在所有视网膜内观察到GFP阳性细胞存活,且均能观察到有供体RGC整合到宿主视网膜RGC层。结论:本研究建立了RGC特异的报告基因干细胞系Brn3b-GFP ESC,通过将该细胞系诱导成视网膜类器官进而获得的GFP阳性RGC移植后能够整合进宿主视网膜。该细胞系的建立将为青光眼及相关疾病提供重要的研究手段和工具。
Objective: This study was designed to establish a mouse embryonic stem cell line that can drive GFP expression specifically in retinal ganglion cells (RGCs). Methods: In this study, we established a Brn3b-GFP knock-in embryonic stem cell line (Brn3b-GFP ESC) by homologous recombination. By 3D culture, we induced these cells into retinal organoids to investigate the cell-specificity of GFP expression. GFP-positive RGCs were then enriched by flow cytometry and transplanted by intravitreal injection into the eyes of healthy mice and NMDA injury model mice to explore the feasibility of a potential clinical application. Results: GFP was specifically expressed in RGCs following induction of Brn3b-GFP ESCs into 3D retinal organoids. Two weeks after these GFP-positive RGCs were transplanted into the control and injured mice, GFP-positive cells were observed in all transplanted retinas, and donor RGCs were seen to integrate into the RGC layer of the host retina. Conclusion: This study has established a retinal ganglion cell-specific reporter stem cell line Brn3b-GFP ESC. The GFP-positive RGCs obtained by inducing the cell line into retinal organoids can be integrated into the host retina after transplantation. The establishment of such a cell line will provide an important research tool for glaucoma and related diseases.
“眼科再生医学”专题

干细胞治疗在角膜重建中的研究进展

Research progress of stem cell therapy in corneal reconstruction

:544-549
 
外伤、感染、先天性疾病等均可能破坏角膜的组织结构和细胞稳态,同时造成角膜干细胞缺损,进而导致组织无法正常愈合,引起角膜盲,是世界范围内致盲的重要原因之一。目前已有多种干细胞相关的技术方法应用于重建功能性角膜组织,取得了瞩目的治疗效果。本综述以角膜缘干细胞缺乏症为主,旨在介绍多种来源的干细胞在角膜重建中的研究现状和最新进展,同时对不同干细胞的特异性标志物的研究进展进行阐述。
Trauma, infection and congenital diseases may disrupt the tissue structure and cellular homeostasis of the cornea, while causing impaired function of corneal stem cell defects, which in turn may even lead to corneal blindness caused by the inability of the tissue to heal properly. Corneal blindness is one of the major causes of blindness worldwide. Several stem cell-related techniques have been applied to reconstruct functional corneal tissue with impressive therapeutic results. This review focuses on corneal limbal stem cell deficiency and aims to present the current status and recent progress of research on stem cells from multiple sources in corneal reconstruction, as well as to describe specific markers of corneal stem cells.
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
中山眼科



中山大学