您的位置: 首页 > 2024年1月 第39卷 第1期 > 文字全文
2023年7月 第38卷 第7期11
目录

铁死亡及铁代谢途径与视网膜退行性疾病研究进展

Research progress on ferroptosis and iron metabolism pathways in retinal degenerative diseases

来源期刊: 眼科学报 | 2024年1月 第39卷 第1期 37-43 发布时间:2024-01-28 收稿时间:2024/4/28 16:35:52 阅读量:201
作者:
关键词:
铁死亡铁代谢年龄相关性黄斑变性青光眼糖尿病性视网膜病变视网膜色素变性
iron metabolism age-related macular degeneration glaucoma diabetic retinopathy retinitis pigmentosa
DOI:
10.12419/24021302
铁死亡是一种以铁沉积和脂质过氧化为主要特征的新型细胞死亡方式,目前在眼科方面的研究不断深入。视网膜因其本身功能和结构特点,易受到氧化应激的影响,而铁死亡已被证明在年龄相关性黄斑变性、青光眼、糖尿病性视网膜病变、视网膜色素变性等视网膜退行性疾病进程中发挥了重要作用。铁代谢途径作为铁死亡的主要调控方式之一,可通过调控细胞内铁稳态,介导芬顿反应形成脂质过氧化物,从而调控细胞铁死亡。转铁蛋白(transferrin,TF)、二价金属转运蛋白1(divalent metal transporter 1,DMT1)、铁蛋白(ferritin,FT)、铁转运蛋白1(ferroportin 1,FPN1)等铁代谢途径关键蛋白涉及细胞内铁离子的摄入、利用、储存、输出等多个方面,对细胞内铁稳态具有重要影响。通过调控铁代谢途径关键蛋白减少铁沉积而抑制铁死亡,可能成为延缓和治疗视网膜退行性疾病的新途径。文章对铁死亡概念、视网膜与铁死亡、铁死亡调控途径、铁代谢途径关键蛋白与视网膜退行性疾病的研究进展进行综述。
Ferroptosis, a novel form of cell death primarily characterized by iron deposition and lipid peroxidation, has been increasingly studied in the feld of ophthalmology. Te retina, due to its specifc functions and structure, is susceptible to oxidative stress. Ferroptosis has been proven to play a crucial role in the progression of retinal degenerative diseases such as age-related macular degeneration, glaucoma, diabetic retinopathy, and retinitis pigmentosa. Te iron metabolism pathway is one of the main regulatory mechanisms of ferroptosis, regulating intracellular iron homeostasis and mediating the formation of lipid peroxides through the Fenton reaction, thereby controlling cellular ferroptosis. Iron metabolism pathways, as one of the main regulatory mechanisms of ferroptosis, can regulate intracellular iron homeostasis and mediate the formation of lipid peroxides through the Fento reaction, thereby controlling cellur ferroptosis. Key proteins involved in iron metabolism pathways, including transferrin (TF), divalent metal transporter 1 (DMT1), ferritin (FT), and ferroportin 1 (FPN1), act as important roles in various aspects such as intracellular iron intake, utilization, storage, and export, exerting signifcant impacts on intracellular iron homeostasis. Regulating key proteins in iron metabolism pathways to reduce iron deposition and inhibiting ferroptosis may emerge aas a novel approach for delaying and treating retinal degenerative diseases. Tis article provides a comprehensive review of the concept of ferroptosis, the relationship between the retina and ferroptosis, the regulatory mechanisms of ferroptosis, and the research progress on key proteins in iron metabolism pathways and retinal degenerative diseases.
铁死亡作为目前常见的细胞死亡方式之一,是一种铁依赖性调节性死亡,由大量脂质过氧化(lipid peroxidation,LPO)介导的膜损伤引起。研究表明,人和动物在多种生理条件和病理应激下都可出现铁死亡,而氧化应激则是诱发铁死亡的重要因素[1]。视网膜居于眼球壁内层,在视觉形成过程中发挥重要作用。视觉信息在视网膜上转换成神经冲动,沿视路传递至视神经中枢从而形成视觉。视网膜因其本身功能和结构的特点,更易受到氧化应激的影响。衰老或病理状态导致视网膜细胞进行性损伤是视网膜退行性疾病的主要特征。近年来的研究表明,铁死亡在视网膜退行性疾病进程中发挥重要作用。铁代谢途径作为铁死亡主要调控途径之一,能够通过调控细胞内铁稳态介导芬顿反应形成脂质过氧化物从而干预铁死亡,其关键蛋白的表达对铁代谢途径及铁死亡具有重要影响。本文从视网膜退行性疾病与铁死亡的关系、铁死亡机制及铁代谢途径关键蛋白在视网膜退行性疾病中的研究进展等方面进行综述。

1 铁死亡概念

铁死亡最早在2012年被Dixon团队研究报道,文章指出铁死亡诱导剂(Erastin)作为一种可以选择性杀死致癌RAS基因细胞的小分子,其抗癌活性依赖于一种新型细胞死亡,铁螯合剂和亲脂性抗氧化剂可以完全阻止这种死亡,但细胞凋亡抑制剂却不能[2]。因此,术语“铁死亡”被用以描述这种铁依赖性、非凋亡形式的细胞死亡。铁死亡是一种活性氧簇(reactive oxygen species,ROS)依赖性细胞死亡形式,与两个主要生化特征相关,即铁沉积和LPO。在形态学上,发生铁死亡的细胞表现为线粒体体积缩小、双层膜密度增加,线粒体嵴减少或消失。在生化水平上,当谷胱甘肽(glutathione,GSH)耗竭,谷胱甘肽过氧化物酶4(glutathione peroxidase 4,GPX4)的活性降低时,二价铁离子会以类似芬顿反应的方式诱发大量脂质活性氧的产生。这些脂质氧化物无法通过GPX4催化的GSH还原反应进行代谢,进而氧化细胞膜上的脂质,导致细胞膜完整性的丧失,最终引发铁死亡[3]

2 视网膜与铁死亡

2.1 视网膜结构与铁死亡

视网膜由视网膜神经上皮细胞和视网膜色素上皮细胞(retinal pigment epithelium,RPE)两部分构成,其核心功能在于捕捉外界光线,并对光线引发的刺激进行相应处理。根据其中所包含细胞[如RPE、感光细胞、双极细胞、神经节细胞(retinal ganglion cell,RGC)、水平细胞等]的排列顺序,将视网膜自外向内分为10层[4]
RPE在维持视觉功能和视觉循环方面起着重要的作用。RPE能够吞噬和消除脱落的光感受器外节,维持视觉细胞的正常更新。光感受器外节富含的多不饱和脂肪酸(polyunsaturated fatty acid,PUFA)是RPE细胞内ROS生成的主要来源[5]。此外,GSH随着年龄增加而不断减少,这是RPE易受到氧化应激影响的另一个重要原因,随之产生的LPO是铁死亡主要的生化特征。研究表明,铁死亡在叔丁基过氧化氢(tert-butyl hydroperoxide,tBH)诱导的RPE细胞死亡中发挥了重要作用[6]
光感受器、双极细胞与RGC构成的三级神经元是视觉传导通路的重要组成部分。光感受器转换的电刺激,经双极细胞传至RGC,由RGC发出的神经纤维向视盘汇集。三级神经元的缺氧是眼底组织缺氧性病变的关键。铁死亡已被证明是感光细胞、视网膜RGC相关模型中调节性细胞死亡的重要途径之一[7-8]

2.2 视网膜退行性疾病与铁死亡

视网膜是人体耗氧量最高的组织之一。高耗氧量、持续光照和丰富的PUFA会增加视网膜中ROS的产生,使其更容易受到氧化应激的影响[9]。衰老及病理过程中氧化应激诱导的ROS超过了抗氧化能力,从而导致视网膜组织的改变和损伤。最近的研究表明铁死亡在年龄相关性黄斑变性(age-related macular degeneration,AMD)、青光眼、糖尿病性视网膜病变(diabetic retinopathy,DR)、视网膜色素变性(retinitis pigmentosa,RP)等视网膜退行性疾病中扮演了重要角色[10]
2.2.1 年龄相关性黄斑变性与铁死亡
AMD是一种神经退行性疾病,也是发达国家老年人群不可逆视力丧失的主要原因,其发病机制主要为RPE的吞噬消化能力降低,导致视细胞外节盘膜未能完全消化。这些未消化的盘膜残余小体在基底部细胞原浆中滞留,随后被排放到细胞外,并沉积在Bruch膜上,最终形成玻璃膜疣[11]。与氧化应激相关的RPE损伤被认为是AMD的早期事件[12]。研究表明,AMD患者的RPE、光感受器和Bruch膜中出现了铁沉积[13-14]。Totsuka等[6]指出,铁死亡抑制剂(ferrostatin-1,Fer-1)和去铁胺比细胞凋亡或坏死性凋亡抑制剂更有效地抑制tBH诱导的RPE死亡,这表明铁死亡在氧化应激诱导的RPE死亡中发挥了更为重要的作用。Song等[15]研究表明,口服铁螯合剂去铁酮能够降低RPE铁水平和氧化应激,为铁调素敲除小鼠因慢性全身铁沉积引起的视网膜变性提供保护。
2.2.2 青光眼与铁死亡
青光眼是一种神经退行性疾病[16],以视神经损害和视野缺损为特征,是世界范围内导致不可逆视力丧失的主要原因[17]。RGC变性是青光眼病理生理中的关键因素。Guo等[8]指出铁死亡是实验性青光眼模型中RGC调节性细胞死亡的主要形式,在抑制RGC死亡方面,Fer-1比凋亡抑制剂表现出了更好的效果,其能有效促进RGC存活并保留视网膜功能。Yao等[18]研究表明,青光眼期间核受体共激活剂4(nuclear receptor coactivator 4,NCOA4)-铁蛋白重链1(ferritin heavy chain 1,FTH1)介导了RGC的铁代谢紊乱及铁死亡,而去铁酮能够抑制铁死亡从而对RGC起到保护作用。
2.2.3 糖尿病性视网膜病变与铁死亡
DR是糖尿病常见的微血管并发症,也是导致老年人视力丧失的主要原因之一。越来越多的证据表明,DR病程中涉及复杂的神经退行性改变[19]。高血糖和代谢途径改变会导致氧化应激和DR初期神经变性的发生[20]。Liu等[21]在糖尿病大鼠模型中的研究表明神经胶质成熟因子-β(glia maturation factor-β,GMFβ)在糖尿病早期阶段的玻璃体内表达上调,其能使溶酶体功能障碍导致酰基辅酶A合成酶长链家族成员4(acyl-CoA synthetase 4,ACSL4)积累,从而诱导RPE细胞铁死亡,而GMFβ抗体及Fer-1均能有效预防早期糖尿病视网膜病变。Shao等[22]研究指出铁死亡诱导剂Erastin可以通过抑制DR大鼠System Xc-系统导致GPX4失活,从而诱导铁死亡的发生,而Fer-1能够通过提高System Xc--GPX4系统的抗氧化能力来阻止铁死亡。
2.2.4 视网膜色素变性与铁死亡
RP是一种遗传性视网膜神经退行性疾病,其特征是进行性感光细胞死亡和RPE萎缩,最初表现为夜盲症,随后持续视力丧失直至失明,RP全球患病率为1/7 000~1/3 000,在我国约为1/4 000[23]。Liu等[24]研究指出碘酸钠增加了视网膜色素上皮ARPE-19细胞内的不稳定铁,减少了细胞内的GSH和半胱氨酸。使用去铁胺或Fer-1能够防止碘酸钠引起的ARPE-19细胞死亡,该研究表明RP与铁死亡之间存在相对较强的联系。Obolensky等[25]指出锌-去铁胺可以通过螯合不稳定铁来减少与铁相关的氧化应激,减轻RD10小鼠RP模型中的视网膜变性。Yang等[26]实验表明枸杞子和丹参提取物与Fer-1通过P53/SLC7A11途径减少ROS生成并抑制RPE中感光细胞的铁死亡。

3 铁代谢途径在视网膜退行性疾病中的研究进展

3.1 铁死亡相关途径

3.1.1 胱氨酸/谷氨酸转运体途径
胱氨酸/谷氨酸转运体(System Xc-)途径是指通过调控System Xc--GSH-GPX4抗氧化防御系统介导的脂质过氧化物产生,从而调控细胞铁死亡的途径。System Xc-是由两个关键亚基(SLC711和SLC3A2)组成的氨基酸逆向转运蛋白,通常介导细胞外胱氨酸(cystine,Cys)和细胞内谷氨酸(glutamate,Glu)跨质膜的交换。Cys进入细胞后,会被还原为半胱氨酸用于合成抗氧化物GSH。GPX4将GSH转化为氧化型GSH,并将细胞毒性脂质过氧化物(PL-OOH)还原为相应的醇(PL-OH)。由于细胞内半胱氨酸浓度有限,Cys被认为是GSH合成的限速前体。GPX4活性的抑制可导致脂质过氧化物的积累,而GSH是GPX4发挥作用所必需的辅助因子。铁死亡主要是由细胞抗氧化系统失活引起的,尤其是System xc--GSH-GPX4依赖性抗氧化防御系统失活,导致脂质过氧化物的积累。因此,System xc-介导的胱氨酸摄取和随后的GSH产生以及GPX4激活在保护细胞免受铁死亡影响中起着核心作用[27]
3.1.2 铁代谢途径
铁代谢途径即通过调控细胞内铁稳态,介导芬顿反应形成脂质过氧化物,从而调控细胞铁死亡的途径。铁有两种氧化形态,即亚铁(Fe2+)和三价铁(Fe3+)。非血红素铁主要是不溶性的Fe3+,需要还原为Fe2+才能吸收。铁代谢途径由Fe3+与血清中的转铁蛋白(transferrin,TF)结合,然后被细胞膜中的转铁蛋白受体(transferrin receptor,TFR)识别内吞形成内体,内体中的低pH值使Fe3+被释放。Fe3+被铁还原酶(Steap3、Dcytb)还原为Fe2+,后经二价金属转运蛋白1(Divalent Metal Transporter 1,DMT1)转运进入胞质不稳定铁池(labile iron pool,LIP),在聚(rC)结合蛋白[Poly(rC)-binding protein,PCBP]的协同下储存在铁蛋白(ferritin,FT)中。多余部分Fe2+则由铁转运蛋白1(ferroportin 1,FPN1)转出细胞[28]。然而,过量Fe2+存在的情况下,可通过芬顿途径增加ROS生成,进而与PUFA反应形成脂质过氧化物,诱发细胞铁死亡。
芬顿反应:Fe2++H2O2 → Fe3++(OH-)+OH
除了通过芬顿反应介导ROS的产生外,铁还被转运到参与LPO的几种含铁酶中。增加铁的摄入、降低铁蛋白的储铁能力或减少铁的输出,均会导致铁的病理性积累,从而诱导铁死亡,而通过调控FT及FPN1能够限制细胞内铁的利用,从而限制铁死亡[3]。因此,铁代谢途径调控铁稳态的协调变化会影响细胞对铁死亡的敏感性。
3.1.3 脂质代谢途径
脂质代谢途径是指通过调控脂质合成、储存、降解过程介导细胞LPO,从而调控细胞铁死亡的途径。铁死亡是由铁依赖性磷脂(phospholipid,PL)过氧化驱动的死亡过程。如果磷脂过氧化物无法被有效中和,并因此积累而破坏质膜完整性,将导致细胞的铁死亡发生。LPO是铁死亡的一个标志,由复杂的脂质代谢过程引起,涉及非酶促芬顿反应和酶促反应途径。PUFA是LPO的主要目标之一。因此,由脂质合成介导的PUFA产生会增加细胞对铁死亡的敏感性。相反,线粒体中的脂肪酸β-氧化通常会消耗大部分脂肪酸,从而导致LPO速率降低。脂滴形成真核细胞中的主要脂质,从而使PUFA远离铁死亡过程中的脂质氧化损伤。含PUFA的磷脂是铁死亡中LPO的主要底物,而将PUFA酯化为磷脂需要ACSL4,这是铁死亡发生的重要环节。多项研究已将ACSL4确定为铁死亡敏感性的关键决定因素[29-31],ACSL4激活后,溶血磷脂酰胆碱酰基转移酶3通过将酰基插入溶血磷脂(特别是磷脂酰胆碱和磷脂酰乙醇胺),参与铁死亡脂质信号的传导。
3.2 铁代谢途径关键蛋白调控视网膜退行性疾病铁死亡铁是多种氧化还原酶的辅助因子,其氧化还原能力会导致ROS的产生,进而对细胞造成损害,因此铁稳态对于维持细胞功能具有重要意义[32]。TF、DMT1、FT、FPN1等关键蛋白涉及细胞内铁离子的摄入、利用、储存、输出等多个方面,相关蛋白表达异常所导致的铁沉积是铁死亡的主要生化特征之一。越来越多的证据表明,调控铁代谢途径关键蛋白对视网膜退行性疾病铁死亡具有重要影响。
3.2.1 转铁蛋白、转铁蛋白受体
研究表明铁死亡可以通过TF和TFR表达的下调来抑制,而在培养基中添加TF则会加速Erastin诱导的铁死亡[33]。TF及TFR是人体内重要的铁转运蛋白,参与游离铁向细胞内转运的过程。在视网膜中,TF主要存在于RPE和光感受器中。TFR在RGC层、内核层、外丛状层、感光内节、RPE和脉络膜中都有表达[34]。细胞可通过调节细胞表面的TFR表达来调节TF结合铁的摄入量。Hadziahmetovic等[35]指出,在光诱导的视网膜变性过程中,RPE中的TFR显著上调,从而有利于铁的摄入,这可能导致氧化应激的增加,形成细胞死亡的恶性循环。
与年轻视网膜相比,衰老视网膜中的TFR蛋白显著增加,这可能导致视网膜神经退行性病变的进展[36]。一项关于视网膜变性的研究中指出,RD10小鼠和C-C趋化因子受体2 (C-C chemokine receptor 2,CCR2)缺陷小鼠在视网膜变性期间TF mRNA水平增加了2~12倍、TFR mRNA水平增加了2.7倍[37]
此外,AMD患者视网膜中的TF表达也有所增加[38]。Youale等[39]指出,TF在各种视网膜变性模型中具有神经保护作用,可防止铁沉积并减少铁诱导的氧化应激。实验表明眼内给予TF减少了青光眼患者约70%的RGC损失,并保留了约47%的轴突。
3.2.2 二价金属转运蛋白1、聚(rC)结合蛋白研究表明,DMT1表达的升高与PCBP表达的抑制可能在诱导细胞铁死亡的过程中发挥重要作用。铁的输入依赖于两种典型途径:转铁蛋白结合铁(transferrin bound iron,TBI)输入和非转铁蛋白结合铁(non transferrin bound iron,NTBI)输入。DMT1被认为是TBI输入中的主要亚铁转运蛋白,因为它能够在酸化内体中的低pH条件下发挥最佳作用[40]。Wysokinski等[41]指出,DMT1多态性可能是AMD的潜在环境依赖性风险标记。Song等[42]研究结果表明,替莫唑胺可能部分通过靶向胶质母细胞瘤中DMT1表达以诱导铁死亡来抑制细胞生长。DMT1也被证明在衰老和神经退行性疾病过程中对体内铁和重金属的生理交换和分布起到重要作用[43]
PCBP是一种多功能蛋白,可作为胞质铁伴侣,将铁结合并转移至哺乳动物细胞中。PCBP可调控LIP中Fe2+的储存和输出,在限制细胞溶质铁的毒性、抑制铁死亡方面发挥作用。Protchenko等[44]的研究表明PCBP1缺失的小鼠肝细胞中存在的无伴侣铁会导致ROS的产生,从而在没有铁沉积的情况下导致LPO和脂肪变性。
3.2.3 铁蛋白
FT减少及其亚基FTH1、铁蛋白轻链(ferritin light chain,FTL)表达增加被证明与细胞铁死亡的发生相关。FT是主要的铁储存蛋白,储存了70%~80%的转入铁。FT主要位于细胞质中,由24个相似的H和L亚基组成,形成一个空心球形的大分子无机复合物。H亚型,也称为FTH1,具有铁氧化酶活性,负责将Fe2+氧化为Fe3+。L亚型,也称为FTL,有助于铁成核和矿化[45]
研究指出,暴露于可见光会诱导FT释放铁,导致光感受器外节发生LPO[46]。这可能与FT的自噬降解有关,FT自噬通过降解细胞铁储备蛋白和诱导TFR1表达提高细胞不稳定铁的水平,从而使细胞ROS快速积累并最终导致铁死亡[47]。细胞内的铁主要储存在FT中,因此FT的变化会改变细胞内铁含量,血清FT也被认为是铁储存的标志物和早期AMD的独立指标[48]。Chen等[36]研究指出与年轻视网膜相比,衰老视网膜中FTLmRNA表达增加,而FTH1mRNA表达不随年龄改变。另一项研究指出病理性高眼压(pathological high intraocular pressure,Ph-IOP)导致视网膜损伤后1~8 h,细胞和视网膜中Fe2+异常积累与NCOA4-FTH1介导的RGC铁代谢紊乱和铁死亡相关[18]。FTH基因表达的重大变化也被证明与光诱导视网膜变性中的氧化应激有关[49]
3.2.4 铁转运蛋白1
研究表明,FPN1过表达可通过调节铁输出来抑制铁死亡,而FPN1敲除则会促进铁死亡。FPN1是目前哺乳动物细胞中唯一已知的铁输出蛋白[50],细胞中多余的Fe2+通过FPN1排出细胞,在亚铁氧化酶(hephaestin,Heph)和铜蓝蛋白(ceruloplasmin,Cp)作用下被重新氧化为Fe3+,形成铁输入-输出循环[3]。研究表明,FPN1与Cp和Heph共定位于RPE和Müller细胞[51],亚铁氧化酶、Cp和Heph可通过将铁从亚铁(Fe2+)氧化为三价铁(Fe3+)形式,增强FPN1介导的铁输出[52]。在tBH暴露下,细胞内TFR、FTL的mRNA水平显著上调,DMT1、FPN1的mRNA水平下调,共同促进了细胞内的铁沉积,诱导了RPE的铁死亡[6]。Theurl等[52]提出了一条视网膜铁通量途径:铁通过血管内皮进入视网膜,由Müller细胞分布,并从基底视网膜色素上皮排出。当视网膜感知到高水平铁时,它会增加铁调素的产生,从而触发血管内皮细胞中的FPN降解,限制铁进入视网膜。

4 总结与展望

视网膜是视觉形成的初始部位,也是多种致盲性眼病的病变部位,在防盲治盲中具有重要作用。高代谢、高耗氧状态及丰富的PUFA使视网膜更容易受到氧化应激的影响而产生损伤和病变,而铁死亡已被证明是视网膜调节性细胞死亡的重要途径。铁死亡在AMD、青光眼、DR、RP等视网膜退行性疾病发展进程中起到重要作用。铁代谢作为铁死亡的关键调控途径之一,铁离子的摄入、吸收、储存及输出过程的异常均会导致视网膜内铁稳态的破坏,从而诱发铁死亡。TF、TFR、DMT1、PCBP、FT、FPN1等铁代谢途径中的关键蛋白,其表达的增强或抑制对视网膜退行性疾病相关铁死亡具有重要影响。目前研究表明,TF、TFR、DMT1、PCBP的过表达,FT的自噬降解及FPN1的下调均可导致细胞内游离铁水平的升高,诱导铁死亡的发生,导致视网膜退行性疾病的进展。因此,通过调控铁代谢途径关键蛋白减少铁沉积而抑制铁死亡,可能成为延缓和治疗视网膜退行性疾病的新途径[53-54]

利益冲突

所有作者均声明不存在利益冲突

开放获取声明

本文适用于知识共享许可协议(Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。详情请访问:https://creativecommons.org/licenses/by-nc-nd/4.0/。
1、Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[ J]. Cell, 2012, 149(5): 1060- 1072.Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[ J]. Cell, 2012, 149(5): 1060- 1072.
2、Dixon%20SJ.%20Ferroptosis%3A%20bug%20or%20feature%3F%5B%20J%5D.%20Immunol%20Rev%2C%202017%2C%20277(1)%3A%20%0A150-157.Dixon%20SJ.%20Ferroptosis%3A%20bug%20or%20feature%3F%5B%20J%5D.%20Immunol%20Rev%2C%202017%2C%20277(1)%3A%20%0A150-157.
3、Tang D, Chen X, Kang R, et al. Ferroptosis: molecular mechanisms and health implications[ J]. Cell Res, 2021, 31(2): 107-125.Tang D, Chen X, Kang R, et al. Ferroptosis: molecular mechanisms and health implications[ J]. Cell Res, 2021, 31(2): 107-125.
4、Masland RH. The fundamental plan of the retina[ J]. Nat Neurosci, 2001, 4(9): 877-886.Masland RH. The fundamental plan of the retina[ J]. Nat Neurosci, 2001, 4(9): 877-886.
5、Sun Y, Zheng Y, Wang C, et al. Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells[ J]. Cell Death Dis, 2018, 9(7): 753.Sun Y, Zheng Y, Wang C, et al. Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells[ J]. Cell Death Dis, 2018, 9(7): 753.
6、Totsuka K, Ueta T, Uchida T, et al. Oxidative stress induces ferroptotic cell death in retinal pigment epithelial cells[ J]. Exp Eye Res, 2019, 181: 316-324.Totsuka K, Ueta T, Uchida T, et al. Oxidative stress induces ferroptotic cell death in retinal pigment epithelial cells[ J]. Exp Eye Res, 2019, 181: 316-324.
7、Chen C, Chen J, Wang Y, et al. Ferroptosis drives photoreceptor degeneration in mice with defects in all-trans-retinal clearance[ J]. J Biol Chem, 2021, 296: 100187.Chen C, Chen J, Wang Y, et al. Ferroptosis drives photoreceptor degeneration in mice with defects in all-trans-retinal clearance[ J]. J Biol Chem, 2021, 296: 100187.
8、Guo M, Zhu Y, Shi Y, et al. Inhibition of ferroptosis promotes retina ganglion cell survival in experimental optic neuropathies[ J]. Redox Biol, 2022, 58: 102541.Guo M, Zhu Y, Shi Y, et al. Inhibition of ferroptosis promotes retina ganglion cell survival in experimental optic neuropathies[ J]. Redox Biol, 2022, 58: 102541.
9、Khandhadia S, Loter y A . Ox idation and age-related macular degeneration: insights from molecular biology[ J]. Expert Rev Mol Med, 2010, 12: e34.Khandhadia S, Loter y A . Ox idation and age-related macular degeneration: insights from molecular biology[ J]. Expert Rev Mol Med, 2010, 12: e34.
10、Liu K, Li H, Wang F, et al. Ferroptosis: mechanisms and advances in ocular diseases[ J]. Mol Cell Biochem, 2023, 478(9): 2081-2095.Liu K, Li H, Wang F, et al. Ferroptosis: mechanisms and advances in ocular diseases[ J]. Mol Cell Biochem, 2023, 478(9): 2081-2095.
11、Fleckenstein M, Keenan TDL, Guymer RH, et al. Age-related macular degeneration[ J]. Nat Rev Dis Primers, 2021, 7(1):31.Fleckenstein M, Keenan TDL, Guymer RH, et al. Age-related macular degeneration[ J]. Nat Rev Dis Primers, 2021, 7(1):31.
12、Kaarniranta K, Pawlowska E, Szczepanska J, et al. Role of mitochondrial DNA damage in ROS-mediated pathogenesis of age-related macular degeneration (AMD)[ J]. Int J Mol Sci, 2019, 20(10): 2374.Kaarniranta K, Pawlowska E, Szczepanska J, et al. Role of mitochondrial DNA damage in ROS-mediated pathogenesis of age-related macular degeneration (AMD)[ J]. Int J Mol Sci, 2019, 20(10): 2374.
13、Wong RW, Richa DC, Hahn P, et al. Iron toxicity as a potential factor in AMD[ J]. Retina, 2007, 27(8): 997-1003.Wong RW, Richa DC, Hahn P, et al. Iron toxicity as a potential factor in AMD[ J]. Retina, 2007, 27(8): 997-1003.
14、Biesemeier A, Yoeruek E, Eibl O, et al. Iron accumulation in Bruch's membrane and melanosomes of donor eyes with age-related macular degeneration[ J]. Exp Eye Res, 2015, 137: 39-49.Biesemeier A, Yoeruek E, Eibl O, et al. Iron accumulation in Bruch's membrane and melanosomes of donor eyes with age-related macular degeneration[ J]. Exp Eye Res, 2015, 137: 39-49.
15、Song D, Zhao L, Li Y, et al. The oral iron chelator deferiprone protects against systemic iron overload-induced retinal degeneration in hepcidin knockout mice[ J]. Invest Ophthalmol Vis Sci, 2014, 55(7): 4525-4532.Song D, Zhao L, Li Y, et al. The oral iron chelator deferiprone protects against systemic iron overload-induced retinal degeneration in hepcidin knockout mice[ J]. Invest Ophthalmol Vis Sci, 2014, 55(7): 4525-4532.
16、Ban N, Siegfried CJ, Apte RS. Monitoring neurodegeneration in glaucoma: therapeutic implications[ J]. Trends Mol Med, 2018, 24(1): 7-17.Ban N, Siegfried CJ, Apte RS. Monitoring neurodegeneration in glaucoma: therapeutic implications[ J]. Trends Mol Med, 2018, 24(1): 7-17.
17、Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review[ J]. JAMA, 2014, 311(18): 1901-1911.Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review[ J]. JAMA, 2014, 311(18): 1901-1911.
18、Yao F, Peng J, Zhang E, et al. Pathologically high intraocular pressure disturbs normal iron homeostasis and leads to retinal ganglion cell ferroptosis in glaucoma[ J]. Cell Death Differ, 2023, 30(1): 69-81.Yao F, Peng J, Zhang E, et al. Pathologically high intraocular pressure disturbs normal iron homeostasis and leads to retinal ganglion cell ferroptosis in glaucoma[ J]. Cell Death Differ, 2023, 30(1): 69-81.
19、Oshitari T. The pathogenesis and therapeutic approaches of diabetic neuropathy in the retina[ J]. Int J Mol Sci, 2021, 22(16): 9050.Oshitari T. The pathogenesis and therapeutic approaches of diabetic neuropathy in the retina[ J]. Int J Mol Sci, 2021, 22(16): 9050.
20、Lin KY, Hsih WH, Lin YB, et al. Update in the epidemiology, risk factors, screening, and treatment of diabetic retinopathy[ J]. J Diabetes Investig, 2021, 12(8): 1322-1325.Lin KY, Hsih WH, Lin YB, et al. Update in the epidemiology, risk factors, screening, and treatment of diabetic retinopathy[ J]. J Diabetes Investig, 2021, 12(8): 1322-1325.
21、Liu C, Sun W, Zhu T, et al. Glia maturation factor-β induces ferroptosis by impairing chaperone-mediated autophagic degradation of ACSL4 in early diabetic retinopathy[ J]. Redox Biol, 2022, 52: 102292.Liu C, Sun W, Zhu T, et al. Glia maturation factor-β induces ferroptosis by impairing chaperone-mediated autophagic degradation of ACSL4 in early diabetic retinopathy[ J]. Redox Biol, 2022, 52: 102292.
22、Shao J, Bai Z, Zhang L, et al. Ferrostatin-1 alleviates tissue and cell damage in diabetic retinopathy by improving the antioxidant capacity of the Xc--GPX4 system[ J]. Cell Death Discov, 2022, 8(1): 426.Shao J, Bai Z, Zhang L, et al. Ferrostatin-1 alleviates tissue and cell damage in diabetic retinopathy by improving the antioxidant capacity of the Xc--GPX4 system[ J]. Cell Death Discov, 2022, 8(1): 426.
23、Liu W, Liu S, Li P, et al. Retinitis pigmentosa: progress in molecular pathology and biotherapeutical strategies[ J]. Int J Mol Sci, 2022, 23(9): 4883.Liu W, Liu S, Li P, et al. Retinitis pigmentosa: progress in molecular pathology and biotherapeutical strategies[ J]. Int J Mol Sci, 2022, 23(9): 4883.
24、Liu B, Wang W, Shah A, et al. Sodium iodate induces ferroptosis in human retinal pigment epithelium ARPE-19 cells[ J]. Cell Death Dis, 2021, 12(3): 230.Liu B, Wang W, Shah A, et al. Sodium iodate induces ferroptosis in human retinal pigment epithelium ARPE-19 cells[ J]. Cell Death Dis, 2021, 12(3): 230.
25、Obolensky A, Berenshtein E, Lederman M, et al. Zinc-desferrioxamine attenuates retinal degeneration in the rd10 mouse model of retinitis pigmentosa[ J]. Free Radic Biol Med, 2011, 51(8): 1482-1491.Obolensky A, Berenshtein E, Lederman M, et al. Zinc-desferrioxamine attenuates retinal degeneration in the rd10 mouse model of retinitis pigmentosa[ J]. Free Radic Biol Med, 2011, 51(8): 1482-1491.
26、Yang Y, Wang Y, Deng Y, et al. Fructus Lycii and Salvia miltiorrhiza Bunge extract attenuate oxidative stress-induced photoreceptor ferroptosis in retinitis pigmentosa[ J]. Biomedecine Pharmacother, 2023, 167: 115547.Yang Y, Wang Y, Deng Y, et al. Fructus Lycii and Salvia miltiorrhiza Bunge extract attenuate oxidative stress-induced photoreceptor ferroptosis in retinitis pigmentosa[ J]. Biomedecine Pharmacother, 2023, 167: 115547.
27、Liu J, Kang R, Tang D. Signaling pathways and defense mechanisms of ferroptosis[ J]. FEBS J, 2022, 289(22): 7038-7050.Liu J, Kang R, Tang D. Signaling pathways and defense mechanisms of ferroptosis[ J]. FEBS J, 2022, 289(22): 7038-7050.
28、Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future[ J]. Cell Death Dis, 2020, 11(2): 88.Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future[ J]. Cell Death Dis, 2020, 11(2): 88.
29、Yang Y, Zhu T, Wang X, et al. ACSL3 and ACSL4, distinct roles in ferroptosis and cancers[ J]. Cancers, 2022, 14(23): 5896.Yang Y, Zhu T, Wang X, et al. ACSL3 and ACSL4, distinct roles in ferroptosis and cancers[ J]. Cancers, 2022, 14(23): 5896.
30、Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[ J]. Nat Chem Biol, 2017, 13(1): 91-98.Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[ J]. Nat Chem Biol, 2017, 13(1): 91-98.
31、Cui Y, Zhang Y, Zhao X, et al. ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation[ J]. Brain Behav Immun, 2021, 93: 312-321.Cui Y, Zhang Y, Zhao X, et al. ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation[ J]. Brain Behav Immun, 2021, 93: 312-321.
32、Rochette L, Dogon G, Rigal E, et al. Lipid peroxidation and iron metabolism: two corner stones in the homeostasis control of ferroptosis[ J]. Int J Mol Sci, 2022, 24(1): 449.Rochette L, Dogon G, Rigal E, et al. Lipid peroxidation and iron metabolism: two corner stones in the homeostasis control of ferroptosis[ J]. Int J Mol Sci, 2022, 24(1): 449.
33、Gao M, Monian P, Quadri N, et al. Glutaminolysis and transferrin regulate ferroptosis[ J]. Mol Cell, 2015, 59(2): 298-308.Gao M, Monian P, Quadri N, et al. Glutaminolysis and transferrin regulate ferroptosis[ J]. Mol Cell, 2015, 59(2): 298-308.
34、Yefimova MG, Jeanny JC, Guillonneau X, et al. Iron, ferritin, transferrin, and transferrin receptor in the adult rat retina[ J]. Invest Ophthalmol Vis Sci, 2000, 41(8): 2343-2351.Yefimova MG, Jeanny JC, Guillonneau X, et al. Iron, ferritin, transferrin, and transferrin receptor in the adult rat retina[ J]. Invest Ophthalmol Vis Sci, 2000, 41(8): 2343-2351.
35、Hadziahmetovic M, Kumar U, Song Y, et al. Microarray analysis of murine retinal light damage reveals changes in iron regulatory, complement, and antioxidant genes in the neurosensory retina and isolated RPE[ J]. Invest Ophthalmol Vis Sci, 2012, 53(9): 5231-5241.Hadziahmetovic M, Kumar U, Song Y, et al. Microarray analysis of murine retinal light damage reveals changes in iron regulatory, complement, and antioxidant genes in the neurosensory retina and isolated RPE[ J]. Invest Ophthalmol Vis Sci, 2012, 53(9): 5231-5241.
36、Chen H, Liu B, Lukas TJ, et al. Changes in iron-regulatory proteins in the aged rodent neural retina[ J]. Neurobiol Aging, 2009, 30(11): 1865- 1876.Chen H, Liu B, Lukas TJ, et al. Changes in iron-regulatory proteins in the aged rodent neural retina[ J]. Neurobiol Aging, 2009, 30(11): 1865- 1876.
37、Deleon E, Lederman M, Berenstein E, et al. Alteration in iron metabolism during retinal degeneration in rd10 mouse[ J]. Invest Ophthalmol Vis Sci, 2009, 50(3): 1360-1365.Deleon E, Lederman M, Berenstein E, et al. Alteration in iron metabolism during retinal degeneration in rd10 mouse[ J]. Invest Ophthalmol Vis Sci, 2009, 50(3): 1360-1365.
38、Chowers I, Wong R, Dentchev T, et al. The iron carrier transferrin is upregulated in retinas from patients with age-related macular degeneration[ J]. Invest Ophthalmol Vis Sci, 2006, 47(5): 2135-2140.Chowers I, Wong R, Dentchev T, et al. The iron carrier transferrin is upregulated in retinas from patients with age-related macular degeneration[ J]. Invest Ophthalmol Vis Sci, 2006, 47(5): 2135-2140.
39、Youale J, Bigot K, Kodati B, et al. Neuroprotective effects of transferrin in experimental glaucoma models[ J]. Int J Mol Sci, 2022, 23(21): 12753.Youale J, Bigot K, Kodati B, et al. Neuroprotective effects of transferrin in experimental glaucoma models[ J]. Int J Mol Sci, 2022, 23(21): 12753.
40、Skj%C3%B8rringe%20T%2C%20Burkhart%20A%2C%20Johnsen%20KB%2C%20et%20al.%20Divalent%20metal%20transporter%20%0A1%20(DMT1)%20in%20the%20brain%3A%20implications%20for%20a%20role%20in%20iron%20transport%20at%20the%20%0Ablood-brain%20barrier%2C%20and%20neuronal%20and%20glial%20pathology%5B%20J%5D.%20Front%20Mol%20%0ANeurosci%2C%202015%2C%208%3A%2019.Skj%C3%B8rringe%20T%2C%20Burkhart%20A%2C%20Johnsen%20KB%2C%20et%20al.%20Divalent%20metal%20transporter%20%0A1%20(DMT1)%20in%20the%20brain%3A%20implications%20for%20a%20role%20in%20iron%20transport%20at%20the%20%0Ablood-brain%20barrier%2C%20and%20neuronal%20and%20glial%20pathology%5B%20J%5D.%20Front%20Mol%20%0ANeurosci%2C%202015%2C%208%3A%2019.
41、Wysokinski D, Zaras M, Dorecka M, et al. An association between environmental factors and the IVS4+44C>A polymorphism of the DMT1 gene in age-related macular degeneration[ J]. Albrecht Von Graefes Arch Fur Klin Und Exp Ophthalmol, 2012, 250(7): 1057-1065.Wysokinski D, Zaras M, Dorecka M, et al. An association between environmental factors and the IVS4+44C>A polymorphism of the DMT1 gene in age-related macular degeneration[ J]. Albrecht Von Graefes Arch Fur Klin Und Exp Ophthalmol, 2012, 250(7): 1057-1065.
42、Song Q, Peng S, Sun Z, et al. Temozolomide drives ferroptosis via a DMT1-dependent pathway in glioblastoma cells[ J]. Yonsei Med J, 2021, 62(9): 843-849.Song Q, Peng S, Sun Z, et al. Temozolomide drives ferroptosis via a DMT1-dependent pathway in glioblastoma cells[ J]. Yonsei Med J, 2021, 62(9): 843-849.
43、Ingrassia R, Garavaglia B, Memo M. DMT1 expression and iron levels at the crossroads between aging and neurodegeneration[ J]. Front Neurosci, 2019, 13: 575.Ingrassia R, Garavaglia B, Memo M. DMT1 expression and iron levels at the crossroads between aging and neurodegeneration[ J]. Front Neurosci, 2019, 13: 575.
44、Protchenko O, Baratz E, Jadhav S, et al. Iron chaperone poly rC binding protein 1 protects mouse liver from lipid peroxidation and steatosis[ J]. Hepatology, 2021, 73(3): 1176-1193.Protchenko O, Baratz E, Jadhav S, et al. Iron chaperone poly rC binding protein 1 protects mouse liver from lipid peroxidation and steatosis[ J]. Hepatology, 2021, 73(3): 1176-1193.
45、Zhang N, Yu X, Xie J, et al. New insights into the role of ferritin in iron homeostasis and neurodegenerative diseases[ J]. Mol Neurobiol, 2021, 58(6): 2812-2823.Zhang N, Yu X, Xie J, et al. New insights into the role of ferritin in iron homeostasis and neurodegenerative diseases[ J]. Mol Neurobiol, 2021, 58(6): 2812-2823.
46、Ohishi K, Zhang XM, Moriwaki S, et al. In the presence of ferritin, visible light induces lipid peroxidation of the porcine photoreceptor outer segment[ J]. Free Radic Res, 2006, 40(8): 799-807.Ohishi K, Zhang XM, Moriwaki S, et al. In the presence of ferritin, visible light induces lipid peroxidation of the porcine photoreceptor outer segment[ J]. Free Radic Res, 2006, 40(8): 799-807.
47、Hou W, Xie Y, Song X, et al. Autophagy promotes ferroptosis by degradation of ferritin[ J]. Autophagy, 2016, 12(8): 1425-1428.Hou W, Xie Y, Song X, et al. Autophagy promotes ferroptosis by degradation of ferritin[ J]. Autophagy, 2016, 12(8): 1425-1428.
48、Oh IH, Choi EY, Park JS, et al. Association of serum ferritin and kidney function with age-related macular degeneration in the general population[ J]. PLoS One, 2016, 11(4): e0153624.Oh IH, Choi EY, Park JS, et al. Association of serum ferritin and kidney function with age-related macular degeneration in the general population[ J]. PLoS One, 2016, 11(4): e0153624.
49、Picard E, Ranchon-Cole I, Jonet L, et al. Light-induced retinal degeneration correlates with changes in iron metabolism gene expression, ferritin level, and aging[ J]. Invest Ophthalmol Vis Sci, 2011, 52(3): 1261-1274.Picard E, Ranchon-Cole I, Jonet L, et al. Light-induced retinal degeneration correlates with changes in iron metabolism gene expression, ferritin level, and aging[ J]. Invest Ophthalmol Vis Sci, 2011, 52(3): 1261-1274.
50、Theurl M, Song D, Clark E, et al. Mice with hepcidin-resistant ferroportin accumulate iron in the retina[ J]. FASEB J, 2016, 30(2): 813-823.Theurl M, Song D, Clark E, et al. Mice with hepcidin-resistant ferroportin accumulate iron in the retina[ J]. FASEB J, 2016, 30(2): 813-823.
51、Hahn P, Dentchev T, Qian Y, et al. Immunolocalization and regulation of iron handling proteins ferritin and ferroportin in the retina[ J]. Mol Vis, 2004, 10: 598-607.Hahn P, Dentchev T, Qian Y, et al. Immunolocalization and regulation of iron handling proteins ferritin and ferroportin in the retina[ J]. Mol Vis, 2004, 10: 598-607.
52、de Domenico I, Ward DM, di Patti MC, et al. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin[ J]. EMBO J, 2007, 26(12): 2823-2831.de Domenico I, Ward DM, di Patti MC, et al. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin[ J]. EMBO J, 2007, 26(12): 2823-2831.
53、Yang M, So KF, Lam WC, et al. Cell ferroptosis: new mechanism and new hope for retinitis pigmentosa[ J]. Cells, 2021, 10(8): 2153.Yang M, So KF, Lam WC, et al. Cell ferroptosis: new mechanism and new hope for retinitis pigmentosa[ J]. Cells, 2021, 10(8): 2153.
54、Yang%20M%2C%20So%20KF%2C%20Lam%20WC%2C%20et%20al.%20Novel%20programmed%20cell%20death%20as%20%0Atherapeutic%20targets%20in%20age-related%20macular%20degeneration%3F%5B%20J%5D.%20Int%20J%20Mol%20Sci%2C%20%0A2020%2C%2021(19)%3A%207279.Yang%20M%2C%20So%20KF%2C%20Lam%20WC%2C%20et%20al.%20Novel%20programmed%20cell%20death%20as%20%0Atherapeutic%20targets%20in%20age-related%20macular%20degeneration%3F%5B%20J%5D.%20Int%20J%20Mol%20Sci%2C%20%0A2020%2C%2021(19)%3A%207279.
1、国家自然科学基金(82274586);四川省中医药管理局科研计划项目(2023MS596)。
This work was supported by the National Natural Science Foundation of China (82274586) and the Scientific Research Project of Sichuan Administration of Traditional Chinese Medicine (2023MS596).()
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
中山眼科



中山大学
目录