1、Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[ J]. Cell, 2012, 149(5): 1060-
1072.Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[ J]. Cell, 2012, 149(5): 1060-
1072.
2、Dixon%20SJ.%20Ferroptosis%3A%20bug%20or%20feature%3F%5B%20J%5D.%20Immunol%20Rev%2C%202017%2C%20277(1)%3A%20%0A150-157.Dixon%20SJ.%20Ferroptosis%3A%20bug%20or%20feature%3F%5B%20J%5D.%20Immunol%20Rev%2C%202017%2C%20277(1)%3A%20%0A150-157.
3、Tang D, Chen X, Kang R, et al. Ferroptosis: molecular mechanisms and
health implications[ J]. Cell Res, 2021, 31(2): 107-125.Tang D, Chen X, Kang R, et al. Ferroptosis: molecular mechanisms and
health implications[ J]. Cell Res, 2021, 31(2): 107-125.
4、Masland RH. The fundamental plan of the retina[ J]. Nat Neurosci, 2001,
4(9): 877-886.Masland RH. The fundamental plan of the retina[ J]. Nat Neurosci, 2001,
4(9): 877-886.
5、Sun Y, Zheng Y, Wang C, et al. Glutathione depletion induces ferroptosis,
autophagy, and premature cell senescence in retinal pigment epithelial
cells[ J]. Cell Death Dis, 2018, 9(7): 753.Sun Y, Zheng Y, Wang C, et al. Glutathione depletion induces ferroptosis,
autophagy, and premature cell senescence in retinal pigment epithelial
cells[ J]. Cell Death Dis, 2018, 9(7): 753.
6、Totsuka K, Ueta T, Uchida T, et al. Oxidative stress induces ferroptotic
cell death in retinal pigment epithelial cells[ J]. Exp Eye Res, 2019, 181:
316-324.Totsuka K, Ueta T, Uchida T, et al. Oxidative stress induces ferroptotic
cell death in retinal pigment epithelial cells[ J]. Exp Eye Res, 2019, 181:
316-324.
7、Chen C, Chen J, Wang Y, et al. Ferroptosis drives photoreceptor
degeneration in mice with defects in all-trans-retinal clearance[ J]. J Biol
Chem, 2021, 296: 100187.Chen C, Chen J, Wang Y, et al. Ferroptosis drives photoreceptor
degeneration in mice with defects in all-trans-retinal clearance[ J]. J Biol
Chem, 2021, 296: 100187.
8、Guo M, Zhu Y, Shi Y, et al. Inhibition of ferroptosis promotes retina
ganglion cell survival in experimental optic neuropathies[ J]. Redox Biol,
2022, 58: 102541.Guo M, Zhu Y, Shi Y, et al. Inhibition of ferroptosis promotes retina
ganglion cell survival in experimental optic neuropathies[ J]. Redox Biol,
2022, 58: 102541.
9、Khandhadia S, Loter y A . Ox idation and age-related macular
degeneration: insights from molecular biology[ J]. Expert Rev Mol Med,
2010, 12: e34.Khandhadia S, Loter y A . Ox idation and age-related macular
degeneration: insights from molecular biology[ J]. Expert Rev Mol Med,
2010, 12: e34.
10、Liu K, Li H, Wang F, et al. Ferroptosis: mechanisms and advances in
ocular diseases[ J]. Mol Cell Biochem, 2023, 478(9): 2081-2095.Liu K, Li H, Wang F, et al. Ferroptosis: mechanisms and advances in
ocular diseases[ J]. Mol Cell Biochem, 2023, 478(9): 2081-2095.
11、Fleckenstein M, Keenan TDL, Guymer RH, et al. Age-related macular
degeneration[ J]. Nat Rev Dis Primers, 2021, 7(1):31.Fleckenstein M, Keenan TDL, Guymer RH, et al. Age-related macular
degeneration[ J]. Nat Rev Dis Primers, 2021, 7(1):31.
12、Kaarniranta K, Pawlowska E, Szczepanska J, et al. Role of mitochondrial
DNA damage in ROS-mediated pathogenesis of age-related macular
degeneration (AMD)[ J]. Int J Mol Sci, 2019, 20(10): 2374.Kaarniranta K, Pawlowska E, Szczepanska J, et al. Role of mitochondrial
DNA damage in ROS-mediated pathogenesis of age-related macular
degeneration (AMD)[ J]. Int J Mol Sci, 2019, 20(10): 2374.
13、Wong RW, Richa DC, Hahn P, et al. Iron toxicity as a potential factor in
AMD[ J]. Retina, 2007, 27(8): 997-1003.Wong RW, Richa DC, Hahn P, et al. Iron toxicity as a potential factor in
AMD[ J]. Retina, 2007, 27(8): 997-1003.
14、Biesemeier A, Yoeruek E, Eibl O, et al. Iron accumulation in Bruch's
membrane and melanosomes of donor eyes with age-related macular
degeneration[ J]. Exp Eye Res, 2015, 137: 39-49.Biesemeier A, Yoeruek E, Eibl O, et al. Iron accumulation in Bruch's
membrane and melanosomes of donor eyes with age-related macular
degeneration[ J]. Exp Eye Res, 2015, 137: 39-49.
15、Song D, Zhao L, Li Y, et al. The oral iron chelator deferiprone protects
against systemic iron overload-induced retinal degeneration in hepcidin
knockout mice[ J]. Invest Ophthalmol Vis Sci, 2014, 55(7): 4525-4532.Song D, Zhao L, Li Y, et al. The oral iron chelator deferiprone protects
against systemic iron overload-induced retinal degeneration in hepcidin
knockout mice[ J]. Invest Ophthalmol Vis Sci, 2014, 55(7): 4525-4532.
16、Ban N, Siegfried CJ, Apte RS. Monitoring neurodegeneration in
glaucoma: therapeutic implications[ J]. Trends Mol Med, 2018, 24(1):
7-17.Ban N, Siegfried CJ, Apte RS. Monitoring neurodegeneration in
glaucoma: therapeutic implications[ J]. Trends Mol Med, 2018, 24(1):
7-17.
17、Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment
of glaucoma: a review[ J]. JAMA, 2014, 311(18): 1901-1911.Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment
of glaucoma: a review[ J]. JAMA, 2014, 311(18): 1901-1911.
18、Yao F, Peng J, Zhang E, et al. Pathologically high intraocular pressure
disturbs normal iron homeostasis and leads to retinal ganglion cell
ferroptosis in glaucoma[ J]. Cell Death Differ, 2023, 30(1): 69-81.Yao F, Peng J, Zhang E, et al. Pathologically high intraocular pressure
disturbs normal iron homeostasis and leads to retinal ganglion cell
ferroptosis in glaucoma[ J]. Cell Death Differ, 2023, 30(1): 69-81.
19、Oshitari T. The pathogenesis and therapeutic approaches of diabetic
neuropathy in the retina[ J]. Int J Mol Sci, 2021, 22(16): 9050.Oshitari T. The pathogenesis and therapeutic approaches of diabetic
neuropathy in the retina[ J]. Int J Mol Sci, 2021, 22(16): 9050.
20、Lin KY, Hsih WH, Lin YB, et al. Update in the epidemiology, risk factors,
screening, and treatment of diabetic retinopathy[ J]. J Diabetes Investig,
2021, 12(8): 1322-1325.Lin KY, Hsih WH, Lin YB, et al. Update in the epidemiology, risk factors,
screening, and treatment of diabetic retinopathy[ J]. J Diabetes Investig,
2021, 12(8): 1322-1325.
21、Liu C, Sun W, Zhu T, et al. Glia maturation factor-β induces ferroptosis
by impairing chaperone-mediated autophagic degradation of ACSL4 in
early diabetic retinopathy[ J]. Redox Biol, 2022, 52: 102292.Liu C, Sun W, Zhu T, et al. Glia maturation factor-β induces ferroptosis
by impairing chaperone-mediated autophagic degradation of ACSL4 in
early diabetic retinopathy[ J]. Redox Biol, 2022, 52: 102292.
22、Shao J, Bai Z, Zhang L, et al. Ferrostatin-1 alleviates tissue and cell
damage in diabetic retinopathy by improving the antioxidant capacity of
the Xc--GPX4 system[ J]. Cell Death Discov, 2022, 8(1): 426.Shao J, Bai Z, Zhang L, et al. Ferrostatin-1 alleviates tissue and cell
damage in diabetic retinopathy by improving the antioxidant capacity of
the Xc--GPX4 system[ J]. Cell Death Discov, 2022, 8(1): 426.
23、Liu W, Liu S, Li P, et al. Retinitis pigmentosa: progress in molecular
pathology and biotherapeutical strategies[ J]. Int J Mol Sci, 2022, 23(9):
4883.Liu W, Liu S, Li P, et al. Retinitis pigmentosa: progress in molecular
pathology and biotherapeutical strategies[ J]. Int J Mol Sci, 2022, 23(9):
4883.
24、Liu B, Wang W, Shah A, et al. Sodium iodate induces ferroptosis in
human retinal pigment epithelium ARPE-19 cells[ J]. Cell Death Dis,
2021, 12(3): 230.Liu B, Wang W, Shah A, et al. Sodium iodate induces ferroptosis in
human retinal pigment epithelium ARPE-19 cells[ J]. Cell Death Dis,
2021, 12(3): 230.
25、Obolensky A, Berenshtein E, Lederman M, et al. Zinc-desferrioxamine
attenuates retinal degeneration in the rd10 mouse model of retinitis
pigmentosa[ J]. Free Radic Biol Med, 2011, 51(8): 1482-1491.Obolensky A, Berenshtein E, Lederman M, et al. Zinc-desferrioxamine
attenuates retinal degeneration in the rd10 mouse model of retinitis
pigmentosa[ J]. Free Radic Biol Med, 2011, 51(8): 1482-1491.
26、Yang Y, Wang Y, Deng Y, et al. Fructus Lycii and Salvia miltiorrhiza Bunge
extract attenuate oxidative stress-induced photoreceptor ferroptosis in
retinitis pigmentosa[ J]. Biomedecine Pharmacother, 2023, 167: 115547.Yang Y, Wang Y, Deng Y, et al. Fructus Lycii and Salvia miltiorrhiza Bunge
extract attenuate oxidative stress-induced photoreceptor ferroptosis in
retinitis pigmentosa[ J]. Biomedecine Pharmacother, 2023, 167: 115547.
27、Liu J, Kang R, Tang D. Signaling pathways and defense mechanisms of
ferroptosis[ J]. FEBS J, 2022, 289(22): 7038-7050.Liu J, Kang R, Tang D. Signaling pathways and defense mechanisms of
ferroptosis[ J]. FEBS J, 2022, 289(22): 7038-7050.
28、Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future[ J]. Cell
Death Dis, 2020, 11(2): 88.Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future[ J]. Cell
Death Dis, 2020, 11(2): 88.
29、Yang Y, Zhu T, Wang X, et al. ACSL3 and ACSL4, distinct roles in
ferroptosis and cancers[ J]. Cancers, 2022, 14(23): 5896.Yang Y, Zhu T, Wang X, et al. ACSL3 and ACSL4, distinct roles in
ferroptosis and cancers[ J]. Cancers, 2022, 14(23): 5896.
30、Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity
by shaping cellular lipid composition[ J]. Nat Chem Biol, 2017, 13(1):
91-98.Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity
by shaping cellular lipid composition[ J]. Nat Chem Biol, 2017, 13(1):
91-98.
31、Cui Y, Zhang Y, Zhao X, et al. ACSL4 exacerbates ischemic stroke by
promoting ferroptosis-induced brain injury and neuroinflammation[ J].
Brain Behav Immun, 2021, 93: 312-321.Cui Y, Zhang Y, Zhao X, et al. ACSL4 exacerbates ischemic stroke by
promoting ferroptosis-induced brain injury and neuroinflammation[ J].
Brain Behav Immun, 2021, 93: 312-321.
32、Rochette L, Dogon G, Rigal E, et al. Lipid peroxidation and iron
metabolism: two corner stones in the homeostasis control of
ferroptosis[ J]. Int J Mol Sci, 2022, 24(1): 449.Rochette L, Dogon G, Rigal E, et al. Lipid peroxidation and iron
metabolism: two corner stones in the homeostasis control of
ferroptosis[ J]. Int J Mol Sci, 2022, 24(1): 449.
33、Gao M, Monian P, Quadri N, et al. Glutaminolysis and transferrin
regulate ferroptosis[ J]. Mol Cell, 2015, 59(2): 298-308.Gao M, Monian P, Quadri N, et al. Glutaminolysis and transferrin
regulate ferroptosis[ J]. Mol Cell, 2015, 59(2): 298-308.
34、Yefimova MG, Jeanny JC, Guillonneau X, et al. Iron, ferritin, transferrin,
and transferrin receptor in the adult rat retina[ J]. Invest Ophthalmol Vis
Sci, 2000, 41(8): 2343-2351.Yefimova MG, Jeanny JC, Guillonneau X, et al. Iron, ferritin, transferrin,
and transferrin receptor in the adult rat retina[ J]. Invest Ophthalmol Vis
Sci, 2000, 41(8): 2343-2351.
35、Hadziahmetovic M, Kumar U, Song Y, et al. Microarray analysis of murine
retinal light damage reveals changes in iron regulatory, complement, and
antioxidant genes in the neurosensory retina and isolated RPE[ J]. Invest
Ophthalmol Vis Sci, 2012, 53(9): 5231-5241.Hadziahmetovic M, Kumar U, Song Y, et al. Microarray analysis of murine
retinal light damage reveals changes in iron regulatory, complement, and
antioxidant genes in the neurosensory retina and isolated RPE[ J]. Invest
Ophthalmol Vis Sci, 2012, 53(9): 5231-5241.
36、Chen H, Liu B, Lukas TJ, et al. Changes in iron-regulatory proteins in
the aged rodent neural retina[ J]. Neurobiol Aging, 2009, 30(11): 1865-
1876.Chen H, Liu B, Lukas TJ, et al. Changes in iron-regulatory proteins in
the aged rodent neural retina[ J]. Neurobiol Aging, 2009, 30(11): 1865-
1876.
37、Deleon E, Lederman M, Berenstein E, et al. Alteration in iron metabolism
during retinal degeneration in rd10 mouse[ J]. Invest Ophthalmol Vis Sci,
2009, 50(3): 1360-1365.Deleon E, Lederman M, Berenstein E, et al. Alteration in iron metabolism
during retinal degeneration in rd10 mouse[ J]. Invest Ophthalmol Vis Sci,
2009, 50(3): 1360-1365.
38、Chowers I, Wong R, Dentchev T, et al. The iron carrier transferrin
is upregulated in retinas from patients with age-related macular
degeneration[ J]. Invest Ophthalmol Vis Sci, 2006, 47(5): 2135-2140.Chowers I, Wong R, Dentchev T, et al. The iron carrier transferrin
is upregulated in retinas from patients with age-related macular
degeneration[ J]. Invest Ophthalmol Vis Sci, 2006, 47(5): 2135-2140.
39、Youale J, Bigot K, Kodati B, et al. Neuroprotective effects of transferrin in
experimental glaucoma models[ J]. Int J Mol Sci, 2022, 23(21): 12753.Youale J, Bigot K, Kodati B, et al. Neuroprotective effects of transferrin in
experimental glaucoma models[ J]. Int J Mol Sci, 2022, 23(21): 12753.
40、Skj%C3%B8rringe%20T%2C%20Burkhart%20A%2C%20Johnsen%20KB%2C%20et%20al.%20Divalent%20metal%20transporter%20%0A1%20(DMT1)%20in%20the%20brain%3A%20implications%20for%20a%20role%20in%20iron%20transport%20at%20the%20%0Ablood-brain%20barrier%2C%20and%20neuronal%20and%20glial%20pathology%5B%20J%5D.%20Front%20Mol%20%0ANeurosci%2C%202015%2C%208%3A%2019.Skj%C3%B8rringe%20T%2C%20Burkhart%20A%2C%20Johnsen%20KB%2C%20et%20al.%20Divalent%20metal%20transporter%20%0A1%20(DMT1)%20in%20the%20brain%3A%20implications%20for%20a%20role%20in%20iron%20transport%20at%20the%20%0Ablood-brain%20barrier%2C%20and%20neuronal%20and%20glial%20pathology%5B%20J%5D.%20Front%20Mol%20%0ANeurosci%2C%202015%2C%208%3A%2019.
41、Wysokinski D, Zaras M, Dorecka M, et al. An association between
environmental factors and the IVS4+44C>A polymorphism of the
DMT1 gene in age-related macular degeneration[ J]. Albrecht Von
Graefes Arch Fur Klin Und Exp Ophthalmol, 2012, 250(7): 1057-1065.Wysokinski D, Zaras M, Dorecka M, et al. An association between
environmental factors and the IVS4+44C>A polymorphism of the
DMT1 gene in age-related macular degeneration[ J]. Albrecht Von
Graefes Arch Fur Klin Und Exp Ophthalmol, 2012, 250(7): 1057-1065.
42、Song Q, Peng S, Sun Z, et al. Temozolomide drives ferroptosis via a
DMT1-dependent pathway in glioblastoma cells[ J]. Yonsei Med J, 2021,
62(9): 843-849.Song Q, Peng S, Sun Z, et al. Temozolomide drives ferroptosis via a
DMT1-dependent pathway in glioblastoma cells[ J]. Yonsei Med J, 2021,
62(9): 843-849.
43、Ingrassia R, Garavaglia B, Memo M. DMT1 expression and iron levels at
the crossroads between aging and neurodegeneration[ J]. Front Neurosci,
2019, 13: 575.Ingrassia R, Garavaglia B, Memo M. DMT1 expression and iron levels at
the crossroads between aging and neurodegeneration[ J]. Front Neurosci,
2019, 13: 575.
44、Protchenko O, Baratz E, Jadhav S, et al. Iron chaperone poly rC binding
protein 1 protects mouse liver from lipid peroxidation and steatosis[ J].
Hepatology, 2021, 73(3): 1176-1193.Protchenko O, Baratz E, Jadhav S, et al. Iron chaperone poly rC binding
protein 1 protects mouse liver from lipid peroxidation and steatosis[ J].
Hepatology, 2021, 73(3): 1176-1193.
45、Zhang N, Yu X, Xie J, et al. New insights into the role of ferritin in iron
homeostasis and neurodegenerative diseases[ J]. Mol Neurobiol, 2021,
58(6): 2812-2823.Zhang N, Yu X, Xie J, et al. New insights into the role of ferritin in iron
homeostasis and neurodegenerative diseases[ J]. Mol Neurobiol, 2021,
58(6): 2812-2823.
46、Ohishi K, Zhang XM, Moriwaki S, et al. In the presence of ferritin, visible
light induces lipid peroxidation of the porcine photoreceptor outer
segment[ J]. Free Radic Res, 2006, 40(8): 799-807.Ohishi K, Zhang XM, Moriwaki S, et al. In the presence of ferritin, visible
light induces lipid peroxidation of the porcine photoreceptor outer
segment[ J]. Free Radic Res, 2006, 40(8): 799-807.
47、Hou W, Xie Y, Song X, et al. Autophagy promotes ferroptosis by
degradation of ferritin[ J]. Autophagy, 2016, 12(8): 1425-1428.Hou W, Xie Y, Song X, et al. Autophagy promotes ferroptosis by
degradation of ferritin[ J]. Autophagy, 2016, 12(8): 1425-1428.
48、Oh IH, Choi EY, Park JS, et al. Association of serum ferritin and
kidney function with age-related macular degeneration in the general
population[ J]. PLoS One, 2016, 11(4): e0153624.Oh IH, Choi EY, Park JS, et al. Association of serum ferritin and
kidney function with age-related macular degeneration in the general
population[ J]. PLoS One, 2016, 11(4): e0153624.
49、Picard E, Ranchon-Cole I, Jonet L, et al. Light-induced retinal
degeneration correlates with changes in iron metabolism gene expression,
ferritin level, and aging[ J]. Invest Ophthalmol Vis Sci, 2011, 52(3):
1261-1274.Picard E, Ranchon-Cole I, Jonet L, et al. Light-induced retinal
degeneration correlates with changes in iron metabolism gene expression,
ferritin level, and aging[ J]. Invest Ophthalmol Vis Sci, 2011, 52(3):
1261-1274.
50、Theurl M, Song D, Clark E, et al. Mice with hepcidin-resistant ferroportin
accumulate iron in the retina[ J]. FASEB J, 2016, 30(2): 813-823.Theurl M, Song D, Clark E, et al. Mice with hepcidin-resistant ferroportin
accumulate iron in the retina[ J]. FASEB J, 2016, 30(2): 813-823.
51、Hahn P, Dentchev T, Qian Y, et al. Immunolocalization and regulation of
iron handling proteins ferritin and ferroportin in the retina[ J]. Mol Vis,
2004, 10: 598-607.Hahn P, Dentchev T, Qian Y, et al. Immunolocalization and regulation of
iron handling proteins ferritin and ferroportin in the retina[ J]. Mol Vis,
2004, 10: 598-607.
52、de Domenico I, Ward DM, di Patti MC, et al. Ferroxidase activity is
required for the stability of cell surface ferroportin in cells expressing
GPI-ceruloplasmin[ J]. EMBO J, 2007, 26(12): 2823-2831.de Domenico I, Ward DM, di Patti MC, et al. Ferroxidase activity is
required for the stability of cell surface ferroportin in cells expressing
GPI-ceruloplasmin[ J]. EMBO J, 2007, 26(12): 2823-2831.
53、Yang M, So KF, Lam WC, et al. Cell ferroptosis: new mechanism and new
hope for retinitis pigmentosa[ J]. Cells, 2021, 10(8): 2153.Yang M, So KF, Lam WC, et al. Cell ferroptosis: new mechanism and new
hope for retinitis pigmentosa[ J]. Cells, 2021, 10(8): 2153.
54、Yang%20M%2C%20So%20KF%2C%20Lam%20WC%2C%20et%20al.%20Novel%20programmed%20cell%20death%20as%20%0Atherapeutic%20targets%20in%20age-related%20macular%20degeneration%3F%5B%20J%5D.%20Int%20J%20Mol%20Sci%2C%20%0A2020%2C%2021(19)%3A%207279.Yang%20M%2C%20So%20KF%2C%20Lam%20WC%2C%20et%20al.%20Novel%20programmed%20cell%20death%20as%20%0Atherapeutic%20targets%20in%20age-related%20macular%20degeneration%3F%5B%20J%5D.%20Int%20J%20Mol%20Sci%2C%20%0A2020%2C%2021(19)%3A%207279.