1、2019 Blindness and Vision Impairment Collaborators GBD, Vision
Loss Expert Group of the Global Burden of Disease Study. Causes of
blindness and vision impairment in 2020 and trends over 30 years,
and prevalence of avoidable blindness in relation to VISION 2020: the
Right to Sight: an analysis for the Global Burden of Disease Study[ J].
Lancet Glob Health, 2021, 9(2): e144-e160.2019 Blindness and Vision Impairment Collaborators GBD, Vision
Loss Expert Group of the Global Burden of Disease Study. Causes of
blindness and vision impairment in 2020 and trends over 30 years,
and prevalence of avoidable blindness in relation to VISION 2020: the
Right to Sight: an analysis for the Global Burden of Disease Study[ J].
Lancet Glob Health, 2021, 9(2): e144-e160.
2、Wong WL, Su X, Li X, et al. Global prevalence of age-related macular
degeneration and disease burden projection for 2020 and 2040: a
systematic review and meta-analysis[ J]. Lancet Glob Health, 2014,
2(2): e106-e116.Wong WL, Su X, Li X, et al. Global prevalence of age-related macular
degeneration and disease burden projection for 2020 and 2040: a
systematic review and meta-analysis[ J]. Lancet Glob Health, 2014,
2(2): e106-e116.
3、Flaxel%20CJ%2C%20Adelman%20RA%20%2C%20Bailey%20ST%2C%20et%20al.%20Age-related%20macular%20%0Adegeneration%20preferred%20practice%20pattern%C2%AE%5B%20J%5D.%20Ophthalmology%2C%202020%2C%20%0A127(1)%3A%20P1-P65.Flaxel%20CJ%2C%20Adelman%20RA%20%2C%20Bailey%20ST%2C%20et%20al.%20Age-related%20macular%20%0Adegeneration%20preferred%20practice%20pattern%C2%AE%5B%20J%5D.%20Ophthalmology%2C%202020%2C%20%0A127(1)%3A%20P1-P65.
4、Wong TY, Chakravarthy U, Klein R, et al. The natural history and
prognosis of neovascular age-related macular degeneration: a systematic
review of the literature and meta-analysis[ J]. Ophthalmology, 2008,
115(1): 116-126.Wong TY, Chakravarthy U, Klein R, et al. The natural history and
prognosis of neovascular age-related macular degeneration: a systematic
review of the literature and meta-analysis[ J]. Ophthalmology, 2008,
115(1): 116-126.
5、Chandra S, Arpa C, Menon D, et al. Ten-year outcomes of antivascular
endothelial growth factor therapy in neovascular age-related macular
degeneration[ J]. Eye, 2020, 34(10): 1888-1896.Chandra S, Arpa C, Menon D, et al. Ten-year outcomes of antivascular
endothelial growth factor therapy in neovascular age-related macular
degeneration[ J]. Eye, 2020, 34(10): 1888-1896.
6、Evans RN, Reeves BC, Maguire MG, et al. Associations of variation in
retinal thickness with visual acuity and anatomic outcomes in eyes with
neovascular age-related macular degeneration lesions treated with anti-vascular endothelial growth factor agents[ J]. JAMA Ophthalmol, 2020,
138(10): 1043-1051.Evans RN, Reeves BC, Maguire MG, et al. Associations of variation in
retinal thickness with visual acuity and anatomic outcomes in eyes with
neovascular age-related macular degeneration lesions treated with anti-vascular endothelial growth factor agents[ J]. JAMA Ophthalmol, 2020,
138(10): 1043-1051.
7、Daniel E, Toth CA, Grunwald JE, et al. Risk of scar in the comparison of
age-related macular degeneration treatments trials[ J]. Ophthalmology,
2014, 121(3): 656-666.Daniel E, Toth CA, Grunwald JE, et al. Risk of scar in the comparison of
age-related macular degeneration treatments trials[ J]. Ophthalmology,
2014, 121(3): 656-666.
8、Roberts PK , Zotter S, Montuoro A , et al. Identification and
quantification of the angiofibrotic switch in neovascular AMD[ J].
Invest Ophthalmol Vis Sci, 2019, 60(1): 304-311.Roberts PK , Zotter S, Montuoro A , et al. Identification and
quantification of the angiofibrotic switch in neovascular AMD[ J].
Invest Ophthalmol Vis Sci, 2019, 60(1): 304-311.
9、Roberts P, Sugita M, Deák G, et al. Automated identification and
quantification of subretinal fibrosis in neovascular age-related macular
degeneration using polarization-sensitive OCT[ J]. Invest Ophthalmol
Vis Sci, 2016, 57(4): 1699-1705.Roberts P, Sugita M, Deák G, et al. Automated identification and
quantification of subretinal fibrosis in neovascular age-related macular
degeneration using polarization-sensitive OCT[ J]. Invest Ophthalmol
Vis Sci, 2016, 57(4): 1699-1705.
10、Ahmed M, Syrine BM, Nadia BA, et al. Optical coherence tomography
angiography features of macular neovascularization in wet age-related
macular degeneration: a cross-sectional study[ J]. Ann Med Surg, 2021,
70: 102826.Ahmed M, Syrine BM, Nadia BA, et al. Optical coherence tomography
angiography features of macular neovascularization in wet age-related
macular degeneration: a cross-sectional study[ J]. Ann Med Surg, 2021,
70: 102826.
11、Souied EH, Miere A, Cohen SY, et al. Optical coherence tomography
angiography of fibrosis in age-related macular degeneration[ J]. Dev
Ophthalmol, 2016, 56: 86-90.Souied EH, Miere A, Cohen SY, et al. Optical coherence tomography
angiography of fibrosis in age-related macular degeneration[ J]. Dev
Ophthalmol, 2016, 56: 86-90.
12、Balaskas K, Ali ZC, Saddik T, et al. Swept-source optical coherence
tomography angiography features of sub-retinal fibrosis in neovascular
age-related macular degeneration[ J]. Clin Exp Ophthalmol, 2019,
47(2): 233-239.Balaskas K, Ali ZC, Saddik T, et al. Swept-source optical coherence
tomography angiography features of sub-retinal fibrosis in neovascular
age-related macular degeneration[ J]. Clin Exp Ophthalmol, 2019,
47(2): 233-239.
13、Cheung CMG, Grewal DS, Teo KYC, et al. The evolution of fibrosis and
atrophy and their relationship with visual outcomes in Asian persons
with neovascular age-related macular degeneration[ J]. Ophthalmol
Retina, 2019, 3(12): 1045-1055.Cheung CMG, Grewal DS, Teo KYC, et al. The evolution of fibrosis and
atrophy and their relationship with visual outcomes in Asian persons
with neovascular age-related macular degeneration[ J]. Ophthalmol
Retina, 2019, 3(12): 1045-1055.
14、Wu J, Zhang J. Neovascular remodeling and subretinal fibrosis as
biomarkers for predicting incomplete response to anti-VEGF therapy
in neovascular age-related macular degeneration[ J]. Front Biosci
(Landmark Ed), 2022, 27(4): 135.Wu J, Zhang J. Neovascular remodeling and subretinal fibrosis as
biomarkers for predicting incomplete response to anti-VEGF therapy
in neovascular age-related macular degeneration[ J]. Front Biosci
(Landmark Ed), 2022, 27(4): 135.
15、Daniel E, Pan W, Ying GS, et al. Development and course of scars in the
comparison of age-related macular degeneration treatments trials[ J].
Ophthalmology, 2018, 125(7): 1037-1046.Daniel E, Pan W, Ying GS, et al. Development and course of scars in the
comparison of age-related macular degeneration treatments trials[ J].
Ophthalmology, 2018, 125(7): 1037-1046.
16、Romano F, Cozzi E, Airaldi M, et al. Ten-year incidence of fibrosis and
risk factors for its development in neovascular age-related macular
degeneration[ J]. Am J Ophthalmol, 2023, 252: 170-181.Romano F, Cozzi E, Airaldi M, et al. Ten-year incidence of fibrosis and
risk factors for its development in neovascular age-related macular
degeneration[ J]. Am J Ophthalmol, 2023, 252: 170-181.
17、Llorente-González S, Hernandez M, González-Zamora J, et al. The role
of retinal fluid location in atrophy and fibrosis evolution of patients
with neovascular age-related macular degeneration long-term treated in
real world[ J]. Acta Ophthalmol, 2022, 100(2): e521-e531.Llorente-González S, Hernandez M, González-Zamora J, et al. The role
of retinal fluid location in atrophy and fibrosis evolution of patients
with neovascular age-related macular degeneration long-term treated in
real world[ J]. Acta Ophthalmol, 2022, 100(2): e521-e531.
18、Sánchez-Monroy J, Nguyen V, Puzo M, et al. Subretinal fluid may
protect against macular atrophy in neovascular age-related macular
degeneration: 5 years of follow-up from Fight Retinal Blindness
registry[ J]. Acta Ophthalmol, 2023, 101(4): 457-464.Sánchez-Monroy J, Nguyen V, Puzo M, et al. Subretinal fluid may
protect against macular atrophy in neovascular age-related macular
degeneration: 5 years of follow-up from Fight Retinal Blindness
registry[ J]. Acta Ophthalmol, 2023, 101(4): 457-464.
19、Teo KYC, Joe AW, Nguyen V, et al. Prevalence and risk factors for the
development of physician-graded subretinal fibrosis in eyes treated for
neovascular age-related macular degeneration[ J]. Retina, 2020, 40(12):
2285-2295.Teo KYC, Joe AW, Nguyen V, et al. Prevalence and risk factors for the
development of physician-graded subretinal fibrosis in eyes treated for
neovascular age-related macular degeneration[ J]. Retina, 2020, 40(12):
2285-2295.
20、Finn AP, Pistilli M, Tai V, et al. Localized optical coherence tomography
precursors of macular atrophy and fibrotic scar in the comparison
of age-related macular degeneration treatments trials[ J]. Am J
Ophthalmol, 2021, 223: 338-347.Finn AP, Pistilli M, Tai V, et al. Localized optical coherence tomography
precursors of macular atrophy and fibrotic scar in the comparison
of age-related macular degeneration treatments trials[ J]. Am J
Ophthalmol, 2021, 223: 338-347.
21、Kim I, Ryu G, Sagong M. Morphological features and prognostic
significance of multilayered pigment epithelium detachment in age-related macular degeneration[ J]. Br J Ophthalmol, 2022, 106(8): 1073-
1078.Kim I, Ryu G, Sagong M. Morphological features and prognostic
significance of multilayered pigment epithelium detachment in age-related macular degeneration[ J]. Br J Ophthalmol, 2022, 106(8): 1073-
1078.
22、Willoughby AS, Ying GS, Toth CA, et al. Subretinal hyperreflective
material in the comparison of age-related macular degeneration
treatments trials[ J]. Ophthalmology, 2015, 122(9): 1846-1853.e5.Willoughby AS, Ying GS, Toth CA, et al. Subretinal hyperreflective
material in the comparison of age-related macular degeneration
treatments trials[ J]. Ophthalmology, 2015, 122(9): 1846-1853.e5.
23、Pokroy R , Mimouni M, Barayev E, et al. Prognostic value of
subretinal hyperreflective material in neovascular age-related macular
degeneration treated with bevacizumab[ J]. Retina, 2018, 38(8): 1485-
1491.Pokroy R , Mimouni M, Barayev E, et al. Prognostic value of
subretinal hyperreflective material in neovascular age-related macular
degeneration treated with bevacizumab[ J]. Retina, 2018, 38(8): 1485-
1491.
24、Casalino G, Stevenson MR, Bandello F, et al. Tomographic biomarkers
predicting progression to fibrosis in treated neovascular age-related
macular degeneration: a multimodal imaging study[ J]. Ophthalmol
Retina, 2018, 2(5): 451-461.Casalino G, Stevenson MR, Bandello F, et al. Tomographic biomarkers
predicting progression to fibrosis in treated neovascular age-related
macular degeneration: a multimodal imaging study[ J]. Ophthalmol
Retina, 2018, 2(5): 451-461.
25、Alex D, Giridhar A, Gopalakrishnan M, et al. Subretinal hyperreflective
material morphology in neovascular age-related macular degeneration:
a case control study[ J]. Indian J Ophthalmol, 2021, 69(7): 1862-1866.Alex D, Giridhar A, Gopalakrishnan M, et al. Subretinal hyperreflective
material morphology in neovascular age-related macular degeneration:
a case control study[ J]. Indian J Ophthalmol, 2021, 69(7): 1862-1866.
26、Kalluri R , Weinberg RA. The basics of epithelial-mesenchymal
transition[ J]. J Clin Invest, 2009, 119(6): 1420-1428.Kalluri R , Weinberg RA. The basics of epithelial-mesenchymal
transition[ J]. J Clin Invest, 2009, 119(6): 1420-1428.
27、Little K, Ma JH, Yang N, et al. Myofibroblasts in macular fibrosis
secondary to neovascular age-related macular degeneration - the
potential sources and molecular cues for their recruitment and
activation[ J]. EBioMedicine, 2018, 38: 283-291.Little K, Ma JH, Yang N, et al. Myofibroblasts in macular fibrosis
secondary to neovascular age-related macular degeneration - the
potential sources and molecular cues for their recruitment and
activation[ J]. EBioMedicine, 2018, 38: 283-291.
28、Shu DY, Butcher E, Saint-Geniez M. EMT and EndMT: emerging roles
in age-related macular degeneration[ J]. Int J Mol Sci, 2020, 21(12):
4271.Shu DY, Butcher E, Saint-Geniez M. EMT and EndMT: emerging roles
in age-related macular degeneration[ J]. Int J Mol Sci, 2020, 21(12):
4271.
29、Ishikawa K , Kannan R , Hinton DR . Molecular mechanisms of
subretinal fibrosis in age-related macular degeneration[ J]. Exp Eye Res,
2016, 142: 19-25.Ishikawa K , Kannan R , Hinton DR . Molecular mechanisms of
subretinal fibrosis in age-related macular degeneration[ J]. Exp Eye Res,
2016, 142: 19-25.
30、Chen X, Xiao W, Liu X, et al. Blockade of jagged/notch pathway
abrogates transforming growth factor β2-induced epithelial-mesenchymal transition in human retinal pigment epithelium cells[ J].
Curr Mol Med, 2014, 14(4): 523-534.Chen X, Xiao W, Liu X, et al. Blockade of jagged/notch pathway
abrogates transforming growth factor β2-induced epithelial-mesenchymal transition in human retinal pigment epithelium cells[ J].
Curr Mol Med, 2014, 14(4): 523-534.
31、Zhou M, Geathers JS, Grillo SL, et al. Role of epithelial-mesenchymal
transition in retinal pigment epithelium dysfunction[ J]. Front Cell Dev
Biol, 2020, 8: 501.Zhou M, Geathers JS, Grillo SL, et al. Role of epithelial-mesenchymal
transition in retinal pigment epithelium dysfunction[ J]. Front Cell Dev
Biol, 2020, 8: 501.
32、Tan W, Zou J, Yoshida S, et al. The role of inflammation in age-related
macular degeneration[ J]. Int J Biol Sci, 2020, 16(15): 2989-3001.Tan W, Zou J, Yoshida S, et al. The role of inflammation in age-related
macular degeneration[ J]. Int J Biol Sci, 2020, 16(15): 2989-3001.
33、Kimura K, Orita T, Liu Y, et al. Attenuation of EMT in RPE cells and
subretinal fibrosis by an RAR-γ agonist[ J]. J Mol Med, 2015, 93(7):
749-758.Kimura K, Orita T, Liu Y, et al. Attenuation of EMT in RPE cells and
subretinal fibrosis by an RAR-γ agonist[ J]. J Mol Med, 2015, 93(7):
749-758.
34、张敬法, 赵珍珍. 湿性年龄相关性黄斑变性发病机制及治疗[ J].
眼科新进展, 2022, 42(2): 85-98.
Zhang JF, Zhao ZZ. Pathogenesis and treatment of wet age-related
macular degeneration[ J]. Recent Adv Ophthalmol, 2022, 42(2): 85-
98.张敬法, 赵珍珍. 湿性年龄相关性黄斑变性发病机制及治疗[ J].
眼科新进展, 2022, 42(2): 85-98.
Zhang JF, Zhao ZZ. Pathogenesis and treatment of wet age-related
macular degeneration[ J]. Recent Adv Ophthalmol, 2022, 42(2): 85-
98.
35、Skeie%20JM%2C%20Mullins%20RF.%20Macrophages%20in%20neovascular%20age-related%20macular%20%0Adegeneration%3A%20friends%20or%20foes%3F%5B%20J%5D.%20Eye%2C%202009%2C%2023(4)%3A%20747-755.Skeie%20JM%2C%20Mullins%20RF.%20Macrophages%20in%20neovascular%20age-related%20macular%20%0Adegeneration%3A%20friends%20or%20foes%3F%5B%20J%5D.%20Eye%2C%202009%2C%2023(4)%3A%20747-755.
36、Tenbrock L, Wolf J, Boneva S, et al. Subretinal fibrosis in neovascular
age-related macular degeneration: current concepts, therapeutic
avenues, and future perspectives[ J]. Cell Tissue Res, 2022, 387(3):
361-375.Tenbrock L, Wolf J, Boneva S, et al. Subretinal fibrosis in neovascular
age-related macular degeneration: current concepts, therapeutic
avenues, and future perspectives[ J]. Cell Tissue Res, 2022, 387(3):
361-375.
37、Wang K, Li H, Sun R, et al. Emerging roles of transforming growth
factor β signaling in wet age-related macular degeneration[ J]. Acta
Biochim Biophys Sin, 2019, 51(1): 1-8.Wang K, Li H, Sun R, et al. Emerging roles of transforming growth
factor β signaling in wet age-related macular degeneration[ J]. Acta
Biochim Biophys Sin, 2019, 51(1): 1-8.
38、Daftarian N, Rohani S, Kanavi MR , et al. Effects of intravitreal
connective tissue growth factor neutralizing antibody on choroidal
neovascular membrane-associated subretinal fibrosis[ J]. Exp Eye Res,
2019, 184: 286-295.Daftarian N, Rohani S, Kanavi MR , et al. Effects of intravitreal
connective tissue growth factor neutralizing antibody on choroidal
neovascular membrane-associated subretinal fibrosis[ J]. Exp Eye Res,
2019, 184: 286-295.
39、Farooq M, Khan AW, Kim MS, et al. The role of fibroblast growth
factor (FGF) signaling in tissue repair and regeneration[ J]. Cells, 2021,
10(11): 3242.Farooq M, Khan AW, Kim MS, et al. The role of fibroblast growth
factor (FGF) signaling in tissue repair and regeneration[ J]. Cells, 2021,
10(11): 3242.
40、Matsuda Y, Nonaka Y, Futakawa S, et al. Anti-angiogenic and anti-scarring dual action of an anti-fibroblast growth factor 2 aptamer in
animal models of retinal disease[ J]. Mol Ther Nucleic Acids, 2019, 17:
819-828.Matsuda Y, Nonaka Y, Futakawa S, et al. Anti-angiogenic and anti-scarring dual action of an anti-fibroblast growth factor 2 aptamer in
animal models of retinal disease[ J]. Mol Ther Nucleic Acids, 2019, 17:
819-828.
41、Strittmatter K, Pomeroy H, Marneros AG. Targeting platelet-derived
growth factor receptor β(+) scaffold formation inhibits choroidal
neovascularization[ J]. Am J Pathol, 2016, 186(7): 1890-1899.Strittmatter K, Pomeroy H, Marneros AG. Targeting platelet-derived
growth factor receptor β(+) scaffold formation inhibits choroidal
neovascularization[ J]. Am J Pathol, 2016, 186(7): 1890-1899.
42、Liu Y, Kanda A, Wu D, et al. Suppression of choroidal
neovascularization and fibrosis by a novel RNAi therapeutic agent
against (pro)renin receptor[ J]. Mol Ther Nucleic Acids, 2019, 17: 113-
125.Liu Y, Kanda A, Wu D, et al. Suppression of choroidal
neovascularization and fibrosis by a novel RNAi therapeutic agent
against (pro)renin receptor[ J]. Mol Ther Nucleic Acids, 2019, 17: 113-
125.
43、P%C3%A9rez%20L%2C%20Mu%C3%B1oz-Durango%20N%2C%20Riedel%20CA%20%2C%20et%20al.%20Endothelial-to-mesenchymal%20transition%3A%20Cytokine-mediated%20pathways%20that%20determine%20%0Aendothelial%20fibrosis%20under%20inflammatory%20conditions%5B%20J%5D.%20Cytokine%20%0AGrowth%20Factor%20Rev%2C%202017%2C%2033%3A%2041-54.P%C3%A9rez%20L%2C%20Mu%C3%B1oz-Durango%20N%2C%20Riedel%20CA%20%2C%20et%20al.%20Endothelial-to-mesenchymal%20transition%3A%20Cytokine-mediated%20pathways%20that%20determine%20%0Aendothelial%20fibrosis%20under%20inflammatory%20conditions%5B%20J%5D.%20Cytokine%20%0AGrowth%20Factor%20Rev%2C%202017%2C%2033%3A%2041-54.
44、李星莹, 郑政, 周希瑗. 影响湿性老年性黄斑变性患者抗VEGF治
疗应答的基线特征[ J]. 眼科学报, 2020, 35(5): 365-372.
Li XY, Zheng Z, Zhou XY. Baseline characteristics affecting the response
of anti-VEGF therapy for wet age-related macular degeneration[ J]. Eye
Sci, 2020, 35(5): 365-372.李星莹, 郑政, 周希瑗. 影响湿性老年性黄斑变性患者抗VEGF治
疗应答的基线特征[ J]. 眼科学报, 2020, 35(5): 365-372.
Li XY, Zheng Z, Zhou XY. Baseline characteristics affecting the response
of anti-VEGF therapy for wet age-related macular degeneration[ J]. Eye
Sci, 2020, 35(5): 365-372.
45、Bloch SB, Lund-Andersen H, Sander B, et al. Subfoveal fibrosis in
eyes with neovascular age-related macular degeneration treated with
intravitreal ranibizumab[ J]. Am J Ophthalmol, 2013, 156(1): 116-124.
e1.Bloch SB, Lund-Andersen H, Sander B, et al. Subfoveal fibrosis in
eyes with neovascular age-related macular degeneration treated with
intravitreal ranibizumab[ J]. Am J Ophthalmol, 2013, 156(1): 116-124.
e1.
46、Kakihara S, Matsuda Y, Hirabayashi K, et al. Role of adrenomedullin
2/intermedin in the pathogenesis of neovascular age-related macular
degeneration[ J]. Lab Investig, 2023, 103(4): 100038.Kakihara S, Matsuda Y, Hirabayashi K, et al. Role of adrenomedullin
2/intermedin in the pathogenesis of neovascular age-related macular
degeneration[ J]. Lab Investig, 2023, 103(4): 100038.
47、Liu Y, Noda K, Murata M, et al. Blockade of platelet-derived growth
factor signaling inhibits choroidal neovascularization and subretinal
fibrosis in mice[ J]. J Clin Med, 2020, 9(7): 2242.Liu Y, Noda K, Murata M, et al. Blockade of platelet-derived growth
factor signaling inhibits choroidal neovascularization and subretinal
fibrosis in mice[ J]. J Clin Med, 2020, 9(7): 2242.
48、Sato K, Takeda A, Hasegawa E, et al. Interleukin-6 plays a crucial role in
the development of subretinal fibrosis in a mouse model[ J]. Immunol
Med, 2018, 41(1): 23-29.Sato K, Takeda A, Hasegawa E, et al. Interleukin-6 plays a crucial role in
the development of subretinal fibrosis in a mouse model[ J]. Immunol
Med, 2018, 41(1): 23-29.