1、Mccarthy J, Minsky ML, Shannon CE. A proposal for the Dartmouth summer research project on artificial intelligence - August 31, 1955[J]. Ai Magazine, 2006, 27(4): 12-4.Mccarthy J, Minsky ML, Shannon CE. A proposal for the Dartmouth summer research project on artificial intelligence - August 31, 1955[J]. Ai Magazine, 2006, 27(4): 12-4.
2、Lip GY, Nieuwlaat R, Pisters R, et al. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation[J]. Chest, 2010, 137(2): 263-272.Lip GY, Nieuwlaat R, Pisters R, et al. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation[J]. Chest, 2010, 137(2): 263-272.
3、LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
4、Olga R, Jia D, Hao S, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015.Olga R, Jia D, Hao S, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015.
5、Hirschberg J, Manning CD. Advances in natural language processing[J]. Science, 2015, 349(6245): 261-266.Hirschberg J, Manning CD. Advances in natural language processing[J]. Science, 2015, 349(6245): 261-266.
6、Garcia GP, Lavieri MS, Andrews C, et al. Accuracy of Kalman filtering in forecasting visual field and intraocular pressure trajectory in patients with ocular hypertension[J]. JAMA Ophthalmol, 2019, 137(12): 1416-1423.Garcia GP, Lavieri MS, Andrews C, et al. Accuracy of Kalman filtering in forecasting visual field and intraocular pressure trajectory in patients with ocular hypertension[J]. JAMA Ophthalmol, 2019, 137(12): 1416-1423.
7、Yim J, Chopra R, Spitz T, et al. Predicting conversion to wet age-related macular degeneration using deep learning[J]. Nat Med, 2020, 26(6): 892-899.Yim J, Chopra R, Spitz T, et al. Predicting conversion to wet age-related macular degeneration using deep learning[J]. Nat Med, 2020, 26(6): 892-899.
8、Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-2410.Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-2410.
9、Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[J]. Ophthalmology, 2014, 121(11): 2081-2090.Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[J]. Ophthalmology, 2014, 121(11): 2081-2090.
10、Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. JAMA, 2017, 318(22): 2211-2223.Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. JAMA, 2017, 318(22): 2211-2223.
11、Oh K, Kang HM, Leem D, et al. Early detection of diabetic retinopathy based on deep learning and ultra-wide-field fundus images[J]. Sci Rep, 2021, 11(1): 1897.Oh K, Kang HM, Leem D, et al. Early detection of diabetic retinopathy based on deep learning and ultra-wide-field fundus images[J]. Sci Rep, 2021, 11(1): 1897.
12、Hacisoftaoglu RE, Karakaya M, Sallam AB. Deep learning frameworks for diabetic retinopathy detection with smartphone-based retinal imaging systems[J]. Pattern Recognit Lett, 2020, 135: 409-417.Hacisoftaoglu RE, Karakaya M, Sallam AB. Deep learning frameworks for diabetic retinopathy detection with smartphone-based retinal imaging systems[J]. Pattern Recognit Lett, 2020, 135: 409-417.
13、van der Heijden AA, Abramoff MD, Verbraak F, et al. Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System[J]. Acta Ophthalmol, 2018, 96(1): 63-68.van der Heijden AA, Abramoff MD, Verbraak F, et al. Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System[J]. Acta Ophthalmol, 2018, 96(1): 63-68.
14、Rajalakshmi R, Subashini R, Anjana RM, et al. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence[J]. Eye (Lond), 2018, 32(6): 1138-1144.Rajalakshmi R, Subashini R, Anjana RM, et al. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence[J]. Eye (Lond), 2018, 32(6): 1138-1144.
15、Wong TY, Scott IU. Clinical practice. Retinal-vein occlusion[J]. N Engl J Med, 2010, 363(22): 2135-2144.Wong TY, Scott IU. Clinical practice. Retinal-vein occlusion[J]. N Engl J Med, 2010, 363(22): 2135-2144.
16、Buehl W, Sacu S, Schmidt-Erfurth U. Retinal vein occlusions[J]. Dev Ophthalmol, 2010, 46: 54-72.Buehl W, Sacu S, Schmidt-Erfurth U. Retinal vein occlusions[J]. Dev Ophthalmol, 2010, 46: 54-72.
17、Nagasato D, Tabuchi H, Ohsugi H, et al. Deep neural network-based method for detecting central retinal vein occlusion using ultrawide-field fundus ophthalmoscopy[J]. J Ophthalmol, 2018, 2018: 1875431.Nagasato D, Tabuchi H, Ohsugi H, et al. Deep neural network-based method for detecting central retinal vein occlusion using ultrawide-field fundus ophthalmoscopy[J]. J Ophthalmol, 2018, 2018: 1875431.
18、Nagasato D, Tabuchi H, Ohsugi H, et al. Deep-learning classifier with ultrawide-field fundus ophthalmoscopy for detecting branch retinal vein occlusion[J]. Int J Ophthalmol, 2019, 12(1): 94-99.Nagasato D, Tabuchi H, Ohsugi H, et al. Deep-learning classifier with ultrawide-field fundus ophthalmoscopy for detecting branch retinal vein occlusion[J]. Int J Ophthalmol, 2019, 12(1): 94-99.
19、Nagasato D, Tabuchi H, Masumoto H, et al. Automated detection of a nonperfusion area caused by retinal vein occlusion in optical coherence tomography angiography images using deep learning[J]. PLoS One, 2019, 14(11): e0223965.Nagasato D, Tabuchi H, Masumoto H, et al. Automated detection of a nonperfusion area caused by retinal vein occlusion in optical coherence tomography angiography images using deep learning[J]. PLoS One, 2019, 14(11): e0223965.
20、Yeung L, Lee YC, Lin YT, et al. Macular ischemia quantification using deep-learning denoised optical coherence tomography angiography in branch retinal vein occlusion[J]. Transl Vis Sci Technol, 2021, 10(7): 23.Yeung L, Lee YC, Lin YT, et al. Macular ischemia quantification using deep-learning denoised optical coherence tomography angiography in branch retinal vein occlusion[J]. Transl Vis Sci Technol, 2021, 10(7): 23.
21、Osborne NN, Wood JP, Chidlow G, et al. Ganglion cell death in glaucoma: what do we really know?[J]. Br J Ophthalmol, 1999, 83(8): 980-986.Osborne NN, Wood JP, Chidlow G, et al. Ganglion cell death in glaucoma: what do we really know?[J]. Br J Ophthalmol, 1999, 83(8): 980-986.
22、Lee T, Jammal AA, Mariottoni EB, et al. Predicting glaucoma development with longitudinal deep learning predictions from fundus photographs[J]. Am J Ophthalmol, 2021, 225: 86-94.Lee T, Jammal AA, Mariottoni EB, et al. Predicting glaucoma development with longitudinal deep learning predictions from fundus photographs[J]. Am J Ophthalmol, 2021, 225: 86-94.
23、Christopher M, Bowd C, Belghith A, et al. Deep learning approaches predict glaucomatous visual field damage from OCT optic nerve head en face images and retinal nerve fiber layer thickness maps[J]. Ophthalmology, 2020, 127(3): 346-356.Christopher M, Bowd C, Belghith A, et al. Deep learning approaches predict glaucomatous visual field damage from OCT optic nerve head en face images and retinal nerve fiber layer thickness maps[J]. Ophthalmology, 2020, 127(3): 346-356.
24、Medeiros FA, Jammal AA, Thompson AC. From machine to machine: an OCT-trained deep learning algorithm for objective quantification of glaucomatous damage in fundus photographs[J]. Ophthalmology, 2019, 126(4): 513-521.Medeiros FA, Jammal AA, Thompson AC. From machine to machine: an OCT-trained deep learning algorithm for objective quantification of glaucomatous damage in fundus photographs[J]. Ophthalmology, 2019, 126(4): 513-521.
25、Thompson AC, Jammal AA, Berchuck SI, et al. Assessment of a segmentation-free deep learning algorithm for diagnosing glaucoma from optical coherence tomography scans[J]. JAMA Ophthalmol, 2020, 138(4): 333-339.Thompson AC, Jammal AA, Berchuck SI, et al. Assessment of a segmentation-free deep learning algorithm for diagnosing glaucoma from optical coherence tomography scans[J]. JAMA Ophthalmol, 2020, 138(4): 333-339.
26、Li Z, He Y, Keel S, et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs[J]. Ophthalmology, 2018, 125(8): 1199-1206.Li Z, He Y, Keel S, et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs[J]. Ophthalmology, 2018, 125(8): 1199-1206.
27、Bressler NM, Bressler SB, Congdon NG, et al. Potential public health impact of Age-Related Eye Disease Study results: AREDS report no. 11[J]. Arch Ophthalmol, 2003, 121(11): 1621-1624.Bressler NM, Bressler SB, Congdon NG, et al. Potential public health impact of Age-Related Eye Disease Study results: AREDS report no. 11[J]. Arch Ophthalmol, 2003, 121(11): 1621-1624.
28、Smith W, Assink J, Klein R, et al. Risk factors for age-related macular degeneration: pooled findings from three continents[J]. Ophthalmology, 2001, 108(4): 697-704.Smith W, Assink J, Klein R, et al. Risk factors for age-related macular degeneration: pooled findings from three continents[J]. Ophthalmology, 2001, 108(4): 697-704.
29、Rudnicka AR, Kapetanakis VV, Jarrar Z, et al. Incidence of late-stage age-related macular degeneration in American Whites: systematic review and meta-analysis[J]. Am J Ophthalmol, 2015, 160(1): 85-93.e3.Rudnicka AR, Kapetanakis VV, Jarrar Z, et al. Incidence of late-stage age-related macular degeneration in American Whites: systematic review and meta-analysis[J]. Am J Ophthalmol, 2015, 160(1): 85-93.e3.
30、Song P, Du Y, Chan KY, et al. The national and subnational prevalence and burden of age-related macular degeneration in China[J]. J Glob Health, 2017, 7(2): 020703.Song P, Du Y, Chan KY, et al. The national and subnational prevalence and burden of age-related macular degeneration in China[J]. J Glob Health, 2017, 7(2): 020703.
31、Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis[J]. Lancet Glob Health, 2014, 2(2): e106-e116.Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis[J]. Lancet Glob Health, 2014, 2(2): e106-e116.
32、Rohm M, Tresp V, Müller M, et al. Predicting visual acuity by using machine learning in patients treated for neovascular age-related macular degeneration[J]. Ophthalmology, 2018, 125(7): 1028-1036.Rohm M, Tresp V, Müller M, et al. Predicting visual acuity by using machine learning in patients treated for neovascular age-related macular degeneration[J]. Ophthalmology, 2018, 125(7): 1028-1036.
33、Banerjee I, de Sisternes L, Hallak JA, et al. Prediction of age-related macular degeneration disease using a sequential deep learning approach on longitudinal SD-OCT imaging biomarkers[J]. Sci Rep, 2020, 10(1): 15434.Banerjee I, de Sisternes L, Hallak JA, et al. Prediction of age-related macular degeneration disease using a sequential deep learning approach on longitudinal SD-OCT imaging biomarkers[J]. Sci Rep, 2020, 10(1): 15434.
34、Waldstein SM, Vogl WD, Bogunovic H, et al. Characterization of drusen and hyperreflective foci as biomarkers for disease progression in age-related macular degeneration using artificial intelligence in optical coherence tomography[J]. JAMA Ophthalmol, 2020, 138(7): 740-747.Waldstein SM, Vogl WD, Bogunovic H, et al. Characterization of drusen and hyperreflective foci as biomarkers for disease progression in age-related macular degeneration using artificial intelligence in optical coherence tomography[J]. JAMA Ophthalmol, 2020, 138(7): 740-747.
35、Lee H, Kang KE, Chung H, et al. Automated segmentation of lesions including subretinal hyperreflective material in neovascular age-related macular degeneration[J]. Am J Ophthalmol, 2018, 191: 64-75.Lee H, Kang KE, Chung H, et al. Automated segmentation of lesions including subretinal hyperreflective material in neovascular age-related macular degeneration[J]. Am J Ophthalmol, 2018, 191: 64-75.
36、Liu Y, Yang J, Zhou Y, et al. Prediction of OCT images of short-term response to anti-VEGF treatment for neovascular age-related macular degeneration using generative adversarial network[J]. Br J Ophthalmol, 2020, 104(12): 1735-1740.Liu Y, Yang J, Zhou Y, et al. Prediction of OCT images of short-term response to anti-VEGF treatment for neovascular age-related macular degeneration using generative adversarial network[J]. Br J Ophthalmol, 2020, 104(12): 1735-1740.
37、Liefers B, Taylor P, Alsaedi A, et al. Quantification of key retinal features in early and late age-related macular degeneration using deep learning[J]. Am J Ophthalmol, 2021, 226: 1-12.Liefers B, Taylor P, Alsaedi A, et al. Quantification of key retinal features in early and late age-related macular degeneration using deep learning[J]. Am J Ophthalmol, 2021, 226: 1-12.
38、Blencowe H, Moxon S, Gilbert C. Update on blindness due to retinopathy of prematurity globally and in India[J]. Indian Pediatr, 2016, 53 Suppl 2: S89-S92.Blencowe H, Moxon S, Gilbert C. Update on blindness due to retinopathy of prematurity globally and in India[J]. Indian Pediatr, 2016, 53 Suppl 2: S89-S92.
39、Robinson R, O'Keefe M. Cryotherapy for retinopathy of prematurity--a prospective study[J]. Br J Ophthalmol, 1992, 76(5): 289-291.Robinson R, O'Keefe M. Cryotherapy for retinopathy of prematurity--a prospective study[J]. Br J Ophthalmol, 1992, 76(5): 289-291.
40、Taylor S, Brown JM, Gupta K, et al. Monitoring disease progression with a quantitative severity scale for retinopathy of prematurity using deep learning[J/OL]. JAMA Ophthalmol, 2019, [Epub ahead of print].Taylor S, Brown JM, Gupta K, et al. Monitoring disease progression with a quantitative severity scale for retinopathy of prematurity using deep learning[J/OL]. JAMA Ophthalmol, 2019, [Epub ahead of print].
41、Huang CY, Kuo RJ, Li CH, et al. Prediction of visual outcomes by an artificial neural network following intravitreal injection and laser therapy for retinopathy of prematurity[J]. Br J Ophthalmol, 2020, 104(9): 1277-1282.Huang CY, Kuo RJ, Li CH, et al. Prediction of visual outcomes by an artificial neural network following intravitreal injection and laser therapy for retinopathy of prematurity[J]. Br J Ophthalmol, 2020, 104(9): 1277-1282.
42、Wang J, Ji J, Zhang M, et al. Automated explainable multidimensional deep learning platform of retinal images for retinopathy of prematurity screening[J]. JAMA Netw Open, 2021, 4(5): e218758.Wang J, Ji J, Zhang M, et al. Automated explainable multidimensional deep learning platform of retinal images for retinopathy of prematurity screening[J]. JAMA Netw Open, 2021, 4(5): e218758.
43、Sahoo NK, Singh SR, Rajendran A, et al. Masqueraders of central serous chorioretinopathy[J]. Surv Ophthalmol, 2019, 64(1): 30-44.Sahoo NK, Singh SR, Rajendran A, et al. Masqueraders of central serous chorioretinopathy[J]. Surv Ophthalmol, 2019, 64(1): 30-44.
44、Zhen Y, Chen H, Zhang X, et al. Assessment of central serous chorioretinopathy depicted on color fundus photographs using deep learning[J]. Retina, 2020, 40(8): 1558-1564.Zhen Y, Chen H, Zhang X, et al. Assessment of central serous chorioretinopathy depicted on color fundus photographs using deep learning[J]. Retina, 2020, 40(8): 1558-1564.
45、Yoon J, Han J, Park JI, et al. Optical coherence tomography-based deep-learning model for detecting central serous chorioretinopathy[J]. Sci Rep, 2020, 10(1): 18852.Yoon J, Han J, Park JI, et al. Optical coherence tomography-based deep-learning model for detecting central serous chorioretinopathy[J]. Sci Rep, 2020, 10(1): 18852.
46、Kunikata H, Abe T, Nakazawa T. Historical, current and future approaches to surgery for rhegmatogenous retinal detachment[J]. Tohoku J Exp Med, 2019, 248(3): 159-168.Kunikata H, Abe T, Nakazawa T. Historical, current and future approaches to surgery for rhegmatogenous retinal detachment[J]. Tohoku J Exp Med, 2019, 248(3): 159-168.
47、Li Z, Guo C, Nie D, et al. Deep learning for detecting retinal detachment and discerning macular status using ultra-widefield fundus images[J]. Commun Biol, 2020, 3(1): 15.Li Z, Guo C, Nie D, et al. Deep learning for detecting retinal detachment and discerning macular status using ultra-widefield fundus images[J]. Commun Biol, 2020, 3(1): 15.
48、Xing R, Niu S, Gao X, et al. Weakly supervised serous retinal detachment segmentation in SD-OCT images by two-stage learning[J]. Biomed Opt Express, 2021, 12(4): 2312-2327.Xing R, Niu S, Gao X, et al. Weakly supervised serous retinal detachment segmentation in SD-OCT images by two-stage learning[J]. Biomed Opt Express, 2021, 12(4): 2312-2327.
49、Ducloyer J B, Le Meur G, Cronin T, et al. Gene therapy for retinitis pigmentosa. [J]. Medecine Sciences, 2020, 36(6-7): 607-615.Ducloyer J B, Le Meur G, Cronin T, et al. Gene therapy for retinitis pigmentosa. [J]. Medecine Sciences, 2020, 36(6-7): 607-615.
50、Masumoto H, Tabuchi H, Nakakura S, et al. Accuracy of a deep convolutional neural network in detection of retinitis pigmentosa on ultrawide-field images[J]. PeerJ, 2019, 7: e6900.Masumoto H, Tabuchi H, Nakakura S, et al. Accuracy of a deep convolutional neural network in detection of retinitis pigmentosa on ultrawide-field images[J]. PeerJ, 2019, 7: e6900.
51、Arsalan M, Baek NR, Owais M, et al. Deep learning-based detection of pigment signs for analysis and diagnosis of retinitis pigmentosa[J]. Sensors (Basel), 2020, 20(12): 3454.Arsalan M, Baek NR, Owais M, et al. Deep learning-based detection of pigment signs for analysis and diagnosis of retinitis pigmentosa[J]. Sensors (Basel), 2020, 20(12): 3454.
52、Wu Q, Zhang B, Hu Y, et al. Detection of morphologic patterns of diabetic macular edema using a deep learning approach based on optical coherence tomography images[J]. Retina, 2021, 41(5): 1110-1117.Wu Q, Zhang B, Hu Y, et al. Detection of morphologic patterns of diabetic macular edema using a deep learning approach based on optical coherence tomography images[J]. Retina, 2021, 41(5): 1110-1117.
53、Abri Aghdam K, Aghajani A, Kanani F, et al. A novel decision tree approach to predict the probability of conversion to multiple sclerosis in Iranian patients with optic neuritis[J]. Mult Scler Relat Disord, 2021, 47: 102658.Abri Aghdam K, Aghajani A, Kanani F, et al. A novel decision tree approach to predict the probability of conversion to multiple sclerosis in Iranian patients with optic neuritis[J]. Mult Scler Relat Disord, 2021, 47: 102658.
54、Li Z, Guo C, Nie D, et al. A deep learning system for identifying lattice degeneration and retinal breaks using ultra-widefield fundus images[J]. Ann Transl Med, 2019, 7(22): 618.Li Z, Guo C, Nie D, et al. A deep learning system for identifying lattice degeneration and retinal breaks using ultra-widefield fundus images[J]. Ann Transl Med, 2019, 7(22): 618.
55、Kermany DS, Goldbaum M, Cai W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5): 1122-1131.e9.Kermany DS, Goldbaum M, Cai W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5): 1122-1131.e9.
56、Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, et al. Artificial intelligence in retina[J]. Prog Retin Eye Res, 2018, 67: 1-29.Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, et al. Artificial intelligence in retina[J]. Prog Retin Eye Res, 2018, 67: 1-29.