您的位置: 首页 > 2023年7月 第38卷 第7期 > 文字全文
2023年7月 第38卷 第7期11
目录

miR-26b 在眼科疾病中的研究进展

Research progress of miR-26b in ophthalmic diseases

来源期刊: 眼科学报 | 2023年7月 第38卷 第7期 535-540 发布时间: 收稿时间:2023/9/7 16:26:45 阅读量:3406
作者:
关键词:
微RNA 眼科疾病 微RNA-26b 基因调控
microrna eye diseases microRNA-26b regulation of gene
DOI:
10.12419/2302010004
微RNA-26b(microRNA-26b,miR-26b)是miR-26家族中的一员,作为基因表达调控因子,在细胞代谢、增殖、分化、凋亡、自噬、侵袭、转移等生物学过程中均发挥着重要的调控作用。近年来,随着对miR-26b研究的深入,研究者认识到miR-26b稳定存在于角膜、结膜上皮、晶状体、睫状体、小梁网、房水、玻璃体和视网膜等眼部组织中,且有越来越多的研究证实miR-26b在眼科疾病,例如翼状胬肉、白内障、增生性玻璃体视网膜病变、增生型糖尿病视网膜病变、年龄相关性黄斑变性等疾病的发生和发展中有着重要的调控作用。该文对近年miR-26b在眼科疾病方面的研究进行了综述,为探讨miR-26b在眼科疾病中发挥作用过程中的分子机制提供理论基础。
MicroRNA-26b (miR-26b) is a member of the miRNA-26 family. As a gene expression regulator, it plays an important regulatory role in biological processes such as cell metabolism, proliferation, differentiation, apoptosis, autophagy,invasion and metastasis. In recent years, with the in-depth study on miR-26b, researchers found that miR-26b stably exists in the cornea, conjunctival epithelium, lens, ciliary body, trabecular meshwork, aqueous humor, vitreous, retina and other ocular tissues. More study results confirmed that miR-26b acted on eye diseases, and played an important regulatory role in diseases occurrence and development, such as pterygium, cataract, proliferative vitreo retinopathy,proliferative diabetic retinopathy, age-related macular degeneration, etc. This article reviews the research progress of miR-26b in eye diseases recently, to provide a theoretical basis on molecular mechanisms involving in the role of miR-26b in eye diseases.
微RNA(microRNA,miRNA)是一类小的内源性基因调节因子,能够调控目标基因转录后的蛋白质表达水平。自从1993年在秀丽隐杆线虫中首次发现第一个miRNA let-7以来,对miRNA的研究已经进行了数十年。据miRbase 22.1提供的数据可知,人类已经发现2 000余种miRNA。其中已有的针对眼中miRNA的研究表明,有数百种miRNA表达于角膜、结膜上皮、晶状体、玻璃体、视网膜、视网膜色素上皮和脉络膜等组织中,在白内障、近视、视网膜母细胞瘤、年龄相关性黄斑变性等疾病的发生、发展中发挥调控作用[1]。从机制上讲,miRNA通过与靶mRNA的3'非翻译区(3'UTR)结合而发挥作用,导致翻译受阻或信使RNA(messenger RNA,mRNA)降解。有报道称人类基因组中可能有超过三分之一的蛋白质编码基因受到miRNA调控,并且单个miRNA可能靶向调节数百个下游基因的mRNA转录物[2-3],这提示我们miRNA是一类非常重要的基因表达调控因子。微小RNA-26b(microRNA-26b,miR-26b)是miRNA家族中的一员,虽然已有研究表明其在眼科多种疾病中均发挥着重要的生物学作用[4]。但是,其在眼科疾病中的调控机制仍不明确。为此,本文通过对miR-26b在眼科疾病中的研究进展进行综述,为探讨miR-26b在眼科疾病中发挥作用过程中的分子机制提供理论基础。

1 miR-26b的介绍

miR-26b,是miR-26家族中已有研究较为成熟的一员,广泛分布于全身各组织中[5-7]。已有的研究表明,人miR-26b的编码基因位于2号染色体[8],它是一个由21个碱基组成的miRNA,在全身以及多种眼科疾病中差异性表达,并参与疾病发生、发展过程中的生物学调控。其主要生物学作用为:可与目的mRNA的3'UTR靶向结合,并通过调控多条信号通路,最终抑制mRNA翻译为蛋白质的过程[9-11],其异常表达通常与细胞的代谢、增殖、分化、凋亡、自噬、侵袭、转移有关,例如,在胆管癌中,磷脂酶C β1(phospholipase Cβ1,PLCβ1)高度表达,并且被鉴定为关键癌基因。miR-26b通过靶向作用于PLCβ1,负调控PLCβ1介导的上皮-间充质转化(epithelial-mesenchymal transition,EMT)相关标志物的蛋白质和mRNA水平,参与胆管癌的增殖和迁移[12]。在肝细胞癌(hepatocellular carcinoma,HCC)中,miR-26b也发挥着关键作用,已有的研究证实miR-26b靶向调控泛素特异性蛋白酶9X(ubiquitin specific peptidase 9X,USP9X)、表皮生长因子受体家族A2(ephrin receptor A2,EphA2)、核转运受体α- 2(karyopherin alpha 2,KPNA2)、基质金属蛋白酶1(matrix metalloproteinase 1,MMP-1)、基质金属蛋白酶7(matrix metalloproteinase 7,MMP-7)、基质金属蛋白酶14(matrix metalloproteinase 14,MMP-14 )等基因的mRNA和蛋白表达[13-15],进而抑制HCC细胞的增殖和迁移。具体而言miR-26b靶向USP9X的3'UTR,进而通过SMAD4和转化生长因子β(transforming growth factor beta,TGF-β)信号通路影响EMT,并参与自噬调节[16, 17]。除此之外miR-26b还通过靶向SMAD1和骨形态发生蛋白4(bone morphogenetic protein 4,BMP4)/ SMAD1信号传导抑制Twist1诱导的HCC细胞EMT、侵袭和转移[18]。由此可见,miR-26b在全身疾病中发挥着重要作用,其作用机制复杂,研究miR-26b的生物学作用或许有助于疾病预防、诊断、治疗,甚至可能作为预后的标志物以及靶点在疾病的发生、发展中发挥更多新作用。

2 miR-26b在眼部组织的表达

miR-26b在眼部各组织中广泛表达,有研究者通过微阵列分析、miRNA-Seq、实时荧光定量PCR(Real Time Quantitative PCR,RT-qPCR)等方法对人的角膜、结膜上皮、晶状体、睫状体、小梁网、房水、玻璃体和视网膜中表达的miRNA进行检测,结果表明miR-26b在这些组织中均有表达[19-20]。此外,有学者对小鼠的角膜、视网膜、视网膜色素上皮、晶状体的miRNA进行了微阵列分析,发现miR-26b在小鼠的上述组织中也稳定表达,并且显著富集于视网膜中[21]。Genini等[22]对犬视网膜行微阵列分析也得出了相似的结果。有趣的是这个研究还对比了miRNA在正常眼和视网膜萎缩性疾病中的差异性表达,发现了miR-26b在X连锁进行性视网膜萎缩 2 (X-linked progressive retinal atrophy 2,xlpra2)这一种早发性X连锁色素性视网膜炎的犬模型中的表达量是增加的。上述研究表明,miR-26b是一种广泛分布在人类和其他动物眼部组织的miRNA,虽然其具体作用尚未阐明,但是miR-26b在多个物种的眼部组织中稳定表达,提示其在眼部发育及各种生物学过程中或许扮演着重要的角色。

3 miR-26b对上皮-间充质转化的调控

EMT是指上皮细胞在多种细胞因子、生长因子和转录因子的作用下转化为具有间充质细胞表型的生物学过程。该过程与白内障、增生性玻璃体视网膜病、增生性糖尿病性视网膜病变等眼部疾病的发生密切相关。具体而言, TGF-β相关的信号通路被认为是诱导EMT的关键调控因子。TGF-β包括TGF-β1、TGF-β2和TGF-β3三种亚型结构,其中TGF-β2是生物活性最强的亚型[23]。研究者在相关研究中经常使用TGF-β来诱导上皮细胞,以获得EMT细胞模型。经诱导的视网膜色素上皮细胞(retinal pigment epithelium cells,RPECs)的EMT过程在眼科疾病的发生、存在和预后中具有重要意义。此外关于miRNA参与调节EMT的研究也日益增多,据报道,已有研究证实miR-26b可以参与抑制TGF-β2诱导的晶状体上皮细胞(lens epithelial cells,LECs)发生EMT,类似地,miR-26b还可能抑制RPECs的EMT过程[11, 24-25],但是miR-26b调控EMT过程的具体分子机制仍不清楚,因此,明确miR-26b参与EMT过程的分子机制可能会对于研究白内障、增生性玻璃体视网膜病变等以EMT为关键发病机制的眼科疾病的诊疗和预防起到一定的作用。

4 miR-26b在眼科疾病中的研究

4.1 翼状胬肉

翼状胬肉指角膜边缘处结膜上皮细胞和血管等异常增殖和侵袭角膜所致的眼部疾病。在中国,翼状胬肉的发病率约为10%,是常见的眼病之一[26]。目前,主流学者认为翼状胬肉的发病机制与多种因素有关,包括紫外线照射、细胞增殖和凋亡以及新生血管形成等。此外,EMT被认为是翼状胬肉手术后复发的关键。在一项最新的研究中,研究人员通过高通量测序探索人翼状胬肉相关的结膜上皮和正常结膜上皮中差异表达的mRNA和环状RNA(circular,circRNA),并利用RT-qPCR筛选出与关键mRNA和circRNA发生EMT相关的miRNA。他们构建了一个circRNA-miRNA-mRNA调控网络,由差异表达显著的10个circRNA、8个miRNA和12个EMT相关mRNA组成,从而探究翼状胬肉的发病机制和潜在的分子机制。结果显示,与正常结膜上皮相比miR-26b是一个下调的miRNA,与纤维连接蛋白1(fibronectin 1,FN1)和金属蛋白酶转移因子12(a disintegrin and metalloproteinase 12,ADAM12)有负相关性,它是hsa_circ_0002406的一个靶miRNA,可能通过海绵化miR-26b来增加FN1和ADAM3的表达,从而参与了EMT相关的circRNA-miRNA-mRNA网络,可能影响翼状胬肉中的EMT过程[27]

4.2 白内障

白内障是一种晶状体退行性改变,其特征是晶状体透明度降低或颜色改变,从而导致光学质量下降。其中,年龄相关性白内障也称老年性白内障,是最常见的类型。多项研究表明,LECs的凋亡引起了白内障发生的一系列事件。Dong等[28-29]用人LECs中的两个细胞系SRA01/04,证实在TGF-β2的诱导下,miR-26b在人后发性白内障附着的LECs和SRA01/04细胞中的表达下降。这些结果表明,miR-26b可以抑制LECs的增殖、迁移和EMT。这与Shi等[11]的研究结果一致,此外,该研究还进一步发现了miR-26b抑制人LECs的下游信号通路可能为PI3K/Akt通路。在后续的研究中,Dong等[28-29]将zeste基因增强子同源物2(Enhancer of zeste homologue 2,EZH2)基因鉴定为miR-26b在LECs中的直接靶标,并发现在原代人LECs经表皮生长因子(epidermal growth factor,EGF)诱导的EMT过程中,miR-26b对EZH2的抑制于是至关重要的。EGF和表皮生长因子受体(epidermal growth factor receptor,EGFR) 的信号传导可以诱导LECs中Myc基因的表达。Myc过表达可以通过募集组蛋白去乙酰化酶3( hi stone deacetylase 3,HDAC3 )抑制miR-26b的表达,进而诱导EZH2基因的表达并促进EMT的进展。除此之外,研究者还发现在分离的兔LECs中,长链非编码RNA心肌梗死相关转录物(myocardial infarction associated transcript,MIAT)通过抑制miR-26b的表达来抑制细胞凋亡[30]。总之,miR-26b可以通过调节多种基因的表达,并通过PI3K/Akt等信号通路来抑制LECs的EMT过程,最终抑制白内障发生和发展。

4.3 增生性玻璃体视网膜病变

增生性玻璃体视网膜病变 (proliferative vitreoretinopathy,PVR)是一种发生在孔源性视网膜脱离自然病程中或复位手术后的严重并发症,其发病的机制是眼部组织的创伤修复和纤维化的过程,病理特征是在玻璃体腔和视网膜表面形成一层视网膜前膜(Epiretinal membrane,ERM),ERM的收缩最终导致视网膜脱离[31-32]。PVR的发生和发展关键在于RPECs的EMT过程。在相关的体外实验中,Chen等[24]通过TGF-β2诱导人视网膜色素上皮细胞(adult retinal pigment rpithelial cell line-19,ARPE-19)细胞系发生EMT这一过程,随后利用高通量分析发现了304个miRNA差异表达,并在此基础上进一步通过RT-qPCR验证了最具有代表性的miRNA,证实了miR-26b在此过程中表达量显著下降。虽然miR-26b在PVR的发生、发展过程中表达量显著下降,但具体的机制仍待进一步研究。

4.4 增生型糖尿病视网膜病变

增生型糖尿病视网膜病变(proliferative diabetic retinopathy,PDR)作为主要的致盲性眼病之一,是糖尿病视网膜病变发展的终末期,与PVR一样作为增殖性视网膜疾病,以继发视网膜前膜为主要病理特征,其病理表现为视网膜缺血引起的新生血管形成及纤维化,新生血管渗入玻璃体形成ERM并牵拉视网膜引起视网膜脱离的一系列过程[33]。Chen等[19]选择具有指征进行玻璃体切割术的PDR患者,术前收集房水样本并进行下一代测序分析。测序结果表明PDR患者的房水中存在miR-26b表达。相似地,Sui等[34]收集需要行玻璃体切割术的PDR患者术中切除的ERM和玻璃体,进行RT-qPCR检测,结果显示与对照组相比,miR-26b无论是在玻璃体还是在ERM中,PDR患者的miR-26b的表达量均明显低于对照组。此外,最新的一项研究表明,胞外囊泡衍生的miR-26b在糖尿病视网膜病变患者的血清中上调[35],这提示miR-26b表达量的异常与PDR的发生、发展有重要联系,但具体的调控机制仍然不清楚,这可能是未来诊断和治疗PDR的重要靶点。

4.5 湿性年龄相关性黄斑变性

湿性年龄相关性黄斑变性(wet age-related macular degeneration,wAMD)又称新生血管性年龄相关性黄斑变性,是一种导致老年人严重视力减退甚至失明的眼病,其病理特征以黄斑区脉络膜新生血管或视网膜新生血管为主,其发病机制尚不明确。目前的研究认为,血管内皮生长因子(vascular endothelial grow th factor,VEGF)、血管生成素2、TGF-β等生长因子是wAMD致病的关键[36-37]。研究人员采集了3 3例wAMD患者的血浆与3 1例对照受试者血浆,利用高通量RT-qPCR分析miRNA的表达,结果显示包括miR-26b在内的10种miRNA仅在wAMD患者的血液中特异性表达[38]。此外有研究表明,长链非编码RNA 浆细胞瘤多样异位基因1(plasmacytoma variant translocation 1,PVT1)能够通过竞争性结合miR-26b来调控靶基因表达。具体来说,PVT1能够结合并降解miR-26b,从而促进结缔组织生长因子(connective tissue growth factor,CTGF)和血管生成素2(Angiopoietin-2,ANGPT2) 的表达[39]。此外,miR-26b能够直接靶向作用并下调CTGF和ANGPT2的表达水平,在人脐静脉内皮细胞的增殖、迁移和体外血管管腔形成中起到抑制作用。因此,PVT1通过调控miR-26b来促进血管新生[40]。这表明miR-26b可能是wAMD的血浆生物标志物,并参与血管新生的调控机制,这或许是研究miRNA与wAMD作用机制的一个重要方向。
图 1 miR-26b的调控机制
Figure 1 The regulatory mechanism of miR-26b

5 小结与展望

近年来,miRNA在眼内组织的研究受到越来越多学者的关注。在眼部表达的数百个miRNA中,miR-26b已被证实在正常角膜、结膜上皮、晶状体、睫状体、小梁网、房水、玻璃体和视网膜等眼部组织中广泛分布。值得注意的是,在相关眼科疾病的研究中,miR-26b的表达与正常组织相比存在明显差异,这表明miR-26b可能参与了翼状胬肉、白内障、wAMD、PVR、PDR等疾病的调控过程。对miR-26b进一步的研究结果显示, miR-26b在眼部疾病尤其是与纤维化关系密切的眼部疾病中发挥着重要的作用。在相应细胞,例如LECs、RPECs的EMT过程中,miR-26b都是抑制着EMT这一纤维化反应中的关键步骤,并且除了在眼科疾病中,miR-26b在胆管癌、肝癌、乳腺癌、舌鳞状细胞癌、甲状腺乳头状癌等癌症的EMT中也都发挥着重要的抑制作用,因此miR-26可能参与EMT的调控并且在绝大多数疾病的EMT过程中发挥重要的抑制作用。
综上所述,miR-26b在眼科疾病中的研究目前大多停留在差异性表达结果的层面,仅对少部分眼科疾病的调控机制做了进一步的探究。尽管miR-26b对眼科疾病的作用机制尚不十分明确,但其很可能成为眼部疾病预防、诊断和治疗的重要靶点,并为未来眼部疾病机制研究提供一个重要的研究方向。同时,我们也期望未来能够深入研究miR-26b在眼科疾病中的作用机制,并研发出新的有效的靶向miR-26b药物及手段,以助力于眼科疾病的防治[21-22]

利益冲突

所有作者均声明不存在利益冲突。

开放获取声明

本文适用于知识共享许可协议(Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。详情请访问:https://creativecommons.org/licenses/by-nc-nd/4.0/
1、R aghunath A , Perumal E. Micro-RNAs and their roles in eye disorders[ J]. Ophthalmic Res, 2015, 53(4): 169-186.R aghunath A , Perumal E. Micro-RNAs and their roles in eye disorders[ J]. Ophthalmic Res, 2015, 53(4): 169-186.
2、Filipowicz%20W%2C%20Bhattacharyya%20SN%2C%20Sonenberg%20N.%20Mechanisms%20of%20post-transcriptional%20regulation%20by%20microRNAs%3A%20are%20the%20answers%20in%20sight%3F%5B%20J%5D.%20%0ANat%20Rev%20Genet%2C%202008%2C%209(2)%3A%20102-114.Filipowicz%20W%2C%20Bhattacharyya%20SN%2C%20Sonenberg%20N.%20Mechanisms%20of%20post-transcriptional%20regulation%20by%20microRNAs%3A%20are%20the%20answers%20in%20sight%3F%5B%20J%5D.%20%0ANat%20Rev%20Genet%2C%202008%2C%209(2)%3A%20102-114.
3、Xu S. microRNA expression in the eyes and their significance in relation to functions[ J]. Prog Retin Eye Res, 2009, 28(2): 87-116.Xu S. microRNA expression in the eyes and their significance in relation to functions[ J]. Prog Retin Eye Res, 2009, 28(2): 87-116.
4、Li C, Li Y, Lu Y, et al. miR-26 family and its target genes in tumorigenesis and development[ J]. Crit Rev Oncol Hematol, 2021, 157: 103124.Li C, Li Y, Lu Y, et al. miR-26 family and its target genes in tumorigenesis and development[ J]. Crit Rev Oncol Hematol, 2021, 157: 103124.
5、Loscher CJ, Hokamp K, Kenna PF, et al. Altered retinal microRNA expression profile in a mouse model of retinitis pigmentosa[ J]. Genome Biol, 2007, 8(11): R248.Loscher CJ, Hokamp K, Kenna PF, et al. Altered retinal microRNA expression profile in a mouse model of retinitis pigmentosa[ J]. Genome Biol, 2007, 8(11): R248.
6、Xu S, Witmer PD, Lumayag S, et al. microRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster[ J]. J Biol Chem, 2007, 282(34): 25053-25066.Xu S, Witmer PD, Lumayag S, et al. microRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster[ J]. J Biol Chem, 2007, 282(34): 25053-25066.
7、Ryan David G, Michelle OF, Lavker Robert M. microRNAs of the mammalian eye display distinct and overlapping tissue specificity[ J]. Mol Vis, 2006, 12: 1175-84.Ryan David G, Michelle OF, Lavker Robert M. microRNAs of the mammalian eye display distinct and overlapping tissue specificity[ J]. Mol Vis, 2006, 12: 1175-84.
8、Arora H, Qureshi R, Park AK, et al. Coordinated regulation of ATF2 by miR-26b in γ-irradiated lung cancer cells[ J]. PLoS One, 2011, 6(8): e23802.Arora H, Qureshi R, Park AK, et al. Coordinated regulation of ATF2 by miR-26b in γ-irradiated lung cancer cells[ J]. PLoS One, 2011, 6(8): e23802.
9、Xiang S, Li J, Zhang Z. miR-26b inhibits isoproterenol-induced cardiac fibrosis via the Keap1/Nrf2 signaling pathway[ J]. Exp Ther Med, 2020, 19(3):2067-2074.Xiang S, Li J, Zhang Z. miR-26b inhibits isoproterenol-induced cardiac fibrosis via the Keap1/Nrf2 signaling pathway[ J]. Exp Ther Med, 2020, 19(3):2067-2074.
10、Yang P, Wu P, Liu X, et al. miR-26b suppresses the development of stanford type A aortic dissection by regulating HMGA2 and TGF-β/ Smad3 signaling pathway[ J]. Ann Thorac Cardiovasc Surg, 2020, 26(3): 140-150.Yang P, Wu P, Liu X, et al. miR-26b suppresses the development of stanford type A aortic dissection by regulating HMGA2 and TGF-β/ Smad3 signaling pathway[ J]. Ann Thorac Cardiovasc Surg, 2020, 26(3): 140-150.
11、Shi E, Ye XN, Xie LY. miRNA-26b suppresses the TGF-β2-induced progression of HLE-B3 cells via the PI3K/Akt pathway[ J]. Int J Ophthalmol. 2021;14(9):1350-1358.Shi E, Ye XN, Xie LY. miRNA-26b suppresses the TGF-β2-induced progression of HLE-B3 cells via the PI3K/Akt pathway[ J]. Int J Ophthalmol. 2021;14(9):1350-1358.
12、Liang S, Guo H, Ma K, et al. A PLCB1-PI3K-AKT signaling axis activates EMT to promote cholangiocarcinoma progression[ J]. Cancer Res, 2021, 81(23): 5889-5903.Liang S, Guo H, Ma K, et al. A PLCB1-PI3K-AKT signaling axis activates EMT to promote cholangiocarcinoma progression[ J]. Cancer Res, 2021, 81(23): 5889-5903.
13、Lin CZ, Ou RW, Hu YH. Lentiviral-mediated microRNA-26b up-regulation inhibits proliferation and migration of hepatocellular carcinoma cells[ J]. Kaohsiung J Med Sci, 2018, 34(10): 547-555.Lin CZ, Ou RW, Hu YH. Lentiviral-mediated microRNA-26b up-regulation inhibits proliferation and migration of hepatocellular carcinoma cells[ J]. Kaohsiung J Med Sci, 2018, 34(10): 547-555.
14、Shen G, Lin Y, Yang X, et al. microRNA-26b inhibits epithelial-mesenchymal transition in hepatocellular carcinoma by targeting USP9X[ J]. BMC Cancer, 2014, 14: 393.Shen G, Lin Y, Yang X, et al. microRNA-26b inhibits epithelial-mesenchymal transition in hepatocellular carcinoma by targeting USP9X[ J]. BMC Cancer, 2014, 14: 393.
15、Li H, Sun Q, Han B, et al. miR-26b inhibits hepatocellular carcinoma cell proliferation, migration, and invasion by targeting EphA2[ J]. Int J Clin Exp Pathol, 2015, 8(5): 4782-4790.Li H, Sun Q, Han B, et al. miR-26b inhibits hepatocellular carcinoma cell proliferation, migration, and invasion by targeting EphA2[ J]. Int J Clin Exp Pathol, 2015, 8(5): 4782-4790.
16、Jin F, Wang Y, Li M, et al. miR-26 enhances chemosensitivity and promotes apoptosis of hepatocellular carcinoma cells through inhibiting autophagy[ J]. Cell Death Dis, 2017, 8(1): e2540.Jin F, Wang Y, Li M, et al. miR-26 enhances chemosensitivity and promotes apoptosis of hepatocellular carcinoma cells through inhibiting autophagy[ J]. Cell Death Dis, 2017, 8(1): e2540.
17、Chen E, Li E, Liu H, et al. miR-26b enhances the sensitivity of hepatocellular carcinoma to Doxorubicin via USP9X-dependent degradation of p53 and regulation of autophagy[ J]. Int J Biol Sci, 2021, 17(3): 781-795.Chen E, Li E, Liu H, et al. miR-26b enhances the sensitivity of hepatocellular carcinoma to Doxorubicin via USP9X-dependent degradation of p53 and regulation of autophagy[ J]. Int J Biol Sci, 2021, 17(3): 781-795.
18、Wang Y, Sun B, Zhao X, et al. Twist1-related miR-26b-5p suppresses epithelial-mesenchymal transition, migration and invasion by targeting SMAD1 in hepatocellular carcinoma[ J]. Oncotarget, 2016, 7(17): 24383-24401.Wang Y, Sun B, Zhao X, et al. Twist1-related miR-26b-5p suppresses epithelial-mesenchymal transition, migration and invasion by targeting SMAD1 in hepatocellular carcinoma[ J]. Oncotarget, 2016, 7(17): 24383-24401.
19、Chen S, Yuan M, Liu Y, et al. Landscape of microRNA in the aqueous humour of proliferative diabetic retinopathy as assessed by next-generation sequencing[ J]. Clin Exp Ophthalmol, 2019, 47(7): 925- 936.Chen S, Yuan M, Liu Y, et al. Landscape of microRNA in the aqueous humour of proliferative diabetic retinopathy as assessed by next-generation sequencing[ J]. Clin Exp Ophthalmol, 2019, 47(7): 925- 936.
20、Drewry M, Helwa I, Allingham RR, et al. miRNA profile in three different normal human ocular tissues by miRNA-seq[ J]. Invest Ophthalmol Vis Sci, 2016, 57(8): 3731-3739.Drewry M, Helwa I, Allingham RR, et al. miRNA profile in three different normal human ocular tissues by miRNA-seq[ J]. Invest Ophthalmol Vis Sci, 2016, 57(8): 3731-3739.
21、Karali M, Peluso I, Gennarino VA, et al. miRNeye: a microRNA expression atlas of the mouse eye[ J]. BMC Genomics, 2010, 11: 715.Karali M, Peluso I, Gennarino VA, et al. miRNeye: a microRNA expression atlas of the mouse eye[ J]. BMC Genomics, 2010, 11: 715.
22、Genini S, Guziewicz KE, Beltran WA, et al. Altered miRNA expression in canine retinas during normal development and in models of retinal degeneration[ J]. BMC Genomics, 2014, 15(1): 172.Genini S, Guziewicz KE, Beltran WA, et al. Altered miRNA expression in canine retinas during normal development and in models of retinal degeneration[ J]. BMC Genomics, 2014, 15(1): 172.
23、余进海, 刘琪, 廖洪斐, 等. 增生性玻璃体视网膜病变中调控上皮间质转化的研究进展[ J]. 眼科新进展, 2019, 39(10)992-995.
Yu JH, Liu Q, Liao HF, et al. Advances in the regulation of epithelialmesenchymal transition in Proliferative vitreoretinopathy[ J]. Recent Adv Ophthalmol, 2019, 39(10)992-995.
余进海, 刘琪, 廖洪斐, 等. 增生性玻璃体视网膜病变中调控上皮间质转化的研究进展[ J]. 眼科新进展, 2019, 39(10)992-995.
Yu JH, Liu Q, Liao HF, et al. Advances in the regulation of epithelialmesenchymal transition in Proliferative vitreoretinopathy[ J]. Recent Adv Ophthalmol, 2019, 39(10)992-995.
24、Chen X, Ye S, Xiao W, et al. Differentially expressed microRNAs in TGFβ2-induced epithelial-mesenchymal transition in retinal pigment epithelium cells[ J]. Int J Mol Med, 2014, 33(5): 1195-1200.Chen X, Ye S, Xiao W, et al. Differentially expressed microRNAs in TGFβ2-induced epithelial-mesenchymal transition in retinal pigment epithelium cells[ J]. Int J Mol Med, 2014, 33(5): 1195-1200.
25、Chen X, Xiao W, Chen W, et al. microRNA-26a and-26b inhibit lens fibrosis and cataract by negatively regulating Jagged-1/Notch signaling pathway[ J]. Cell Death Differ, 2017, 24(11): 1990.Chen X, Xiao W, Chen W, et al. microRNA-26a and-26b inhibit lens fibrosis and cataract by negatively regulating Jagged-1/Notch signaling pathway[ J]. Cell Death Differ, 2017, 24(11): 1990.
26、江华维, 刘霞, 王艳, 等. 翼状胬肉发病机制的研究进展[ J]. 昆明医科大学学报, 2023, 44(1)144-150.
Jiang HW, Liu X, Wang Y, et al. Research progress on the pathogenesis of pterygium[ J]. J Kunming Med Univ, 2023, 44(1)144-150.
江华维, 刘霞, 王艳, 等. 翼状胬肉发病机制的研究进展[ J]. 昆明医科大学学报, 2023, 44(1)144-150.
Jiang HW, Liu X, Wang Y, et al. Research progress on the pathogenesis of pterygium[ J]. J Kunming Med Univ, 2023, 44(1)144-150.
27、Yu J, Luo J, Li P, et al. Identification of the circRNA-miRNA-mRNA regulatory network in pterygium-associated conjunctival epithelium[ J]. Biomed Res Int, 2022, 2022: 2673890.Yu J, Luo J, Li P, et al. Identification of the circRNA-miRNA-mRNA regulatory network in pterygium-associated conjunctival epithelium[ J]. Biomed Res Int, 2022, 2022: 2673890.
28、Dong N, Xu B, Benya SR, et al. MiRNA-26b inhibits the proliferation, migration, and epithelial-mesenchymal transition of lens epithelial cells[ J]. Mol Cell Biochem, 2014, 396(1-2): 229-238.Dong N, Xu B, Benya SR, et al. MiRNA-26b inhibits the proliferation, migration, and epithelial-mesenchymal transition of lens epithelial cells[ J]. Mol Cell Biochem, 2014, 396(1-2): 229-238.
29、Dong N, Xu B, Xu J. EGF-mediated overexpression of myc attenuates miR-26b by recruiting HDAC3 to induce epithelial-mesenchymal transition of lens epithelial cells[ J]. Biomed Res Int, 2018, 2018: 7148023.Dong N, Xu B, Xu J. EGF-mediated overexpression of myc attenuates miR-26b by recruiting HDAC3 to induce epithelial-mesenchymal transition of lens epithelial cells[ J]. Biomed Res Int, 2018, 2018: 7148023.
30、Li Y, Zhang W, Ke H, et al. Rs1894720 polymorphism is associated with the risk of age-related cataract by regulating the proliferation of epithelial cells in the lens via the signalling pathway of MIAT/miR- 26b/BCL2L2[ J]. Arch Med Sci, 2022, 18(1): 223-236.Li Y, Zhang W, Ke H, et al. Rs1894720 polymorphism is associated with the risk of age-related cataract by regulating the proliferation of epithelial cells in the lens via the signalling pathway of MIAT/miR- 26b/BCL2L2[ J]. Arch Med Sci, 2022, 18(1): 223-236.
31、王资懿, 吴灵丹, 陈洁, 等. 生长因子与增生性玻璃体视网膜病变相关性的研究进展[ J]. 国际眼科杂志, 2022, 22(1): 71-75.
Wang ZY, Wu LD, Chen J, et al. Advances in the correlation between growth factors and proliferative vitreoretinopathy[ J]. Int Eye Sci, 2022, 22(1): 71-75.
王资懿, 吴灵丹, 陈洁, 等. 生长因子与增生性玻璃体视网膜病变相关性的研究进展[ J]. 国际眼科杂志, 2022, 22(1): 71-75.
Wang ZY, Wu LD, Chen J, et al. Advances in the correlation between growth factors and proliferative vitreoretinopathy[ J]. Int Eye Sci, 2022, 22(1): 71-75.
32、杨俊楠, 包秀丽. 微小RNA调控增生性玻璃体视网膜病变的研究进展[ J]. 国际眼科杂志, 2022, 22(1): 67-70.
Yang JN, Bao XL Research progress in the regulation of proliferative vitreoretinopathy by microRNAs [ J]. Int J Ophthalmol, 2022, 22 (1): 67-70.
杨俊楠, 包秀丽. 微小RNA调控增生性玻璃体视网膜病变的研究进展[ J]. 国际眼科杂志, 2022, 22(1): 67-70.
Yang JN, Bao XL Research progress in the regulation of proliferative vitreoretinopathy by microRNAs [ J]. Int J Ophthalmol, 2022, 22 (1): 67-70.
33、Tsotridou E, Loukovitis E, Zapsalis K, et al. A review of last decade developments on epiretinal membrane pathogenesis[ J]. Med Hypothesis Discov Innov Ophthalmol, 2020, 9(2): 91-110.Tsotridou E, Loukovitis E, Zapsalis K, et al. A review of last decade developments on epiretinal membrane pathogenesis[ J]. Med Hypothesis Discov Innov Ophthalmol, 2020, 9(2): 91-110.
34、隋文婕, 张晶晶, 汤庆丽, 等. lncRNA PVT1及miR-26b在增生型糖 尿病视网膜病变患眼玻璃体、增生膜中的表达研究[ J]. 临床眼科杂志, 2020, 28(4): 289-293.
Sui WJ, Zhang JJ, Tang QL, et al. Expressions of lncRNA PVT1 and miR-26b in the vitreous and proliferative membrane of proliferative diabetic retinopathy[ J]. J Clin Ophthalmol, 2020, 28(4): 289-293.
隋文婕, 张晶晶, 汤庆丽, 等. lncRNA PVT1及miR-26b在增生型糖 尿病视网膜病变患眼玻璃体、增生膜中的表达研究[ J]. 临床眼科杂志, 2020, 28(4): 289-293.
Sui WJ, Zhang JJ, Tang QL, et al. Expressions of lncRNA PVT1 and miR-26b in the vitreous and proliferative membrane of proliferative diabetic retinopathy[ J]. J Clin Ophthalmol, 2020, 28(4): 289-293.
35、Zhang Y, Wei J, Zhang L, et al. Extracellular vesicle-derived miR-26b-5p is up-regulated in the serum of patients with diabetic retinopathy[ J]. Comb Chem High Throughput Screen, 2022, 25(5): 877-882.Zhang Y, Wei J, Zhang L, et al. Extracellular vesicle-derived miR-26b-5p is up-regulated in the serum of patients with diabetic retinopathy[ J]. Comb Chem High Throughput Screen, 2022, 25(5): 877-882.
36、Spaide RF, Jaffe GJ, Sarraf D, et al. Consensus nomenclature for reporting neovascular age-related macular degeneration data: consensus on neovascular age-related macular degeneration nomenclature study group[ J]. Ophthalmology, 2020, 127(5): 616-636.Spaide RF, Jaffe GJ, Sarraf D, et al. Consensus nomenclature for reporting neovascular age-related macular degeneration data: consensus on neovascular age-related macular degeneration nomenclature study group[ J]. Ophthalmology, 2020, 127(5): 616-636.
37、张敬法, 赵珍珍. 湿性年龄相关性黄斑变性发病机制及治疗[ J]. 眼科新进展, 2022, 42(2): 85-98.
Zhang JF, Zhao ZZ. Pathogenesis and treatment of wet age-related macular degeneration[ J]. Recent Adv Ophthalmol, 2022, 42(2): 85- 98.
张敬法, 赵珍珍. 湿性年龄相关性黄斑变性发病机制及治疗[ J]. 眼科新进展, 2022, 42(2): 85-98.
Zhang JF, Zhao ZZ. Pathogenesis and treatment of wet age-related macular degeneration[ J]. Recent Adv Ophthalmol, 2022, 42(2): 85- 98.
38、Ertekin%20S%2C%20Y%C4%B1ld%C4%B1r%C4%B1m%20O%2C%20Din%C3%A7%20E%2C%20et%20al.%20Evaluation%20of%20circulating%20miRNAs%20%0Ain%20wet%20age-related%20macular%20degeneration%5B%20J%5D.%20Mol%20Vis%2C%202014%2C%2020%3A%201057-%0A1066.Ertekin%20S%2C%20Y%C4%B1ld%C4%B1r%C4%B1m%20O%2C%20Din%C3%A7%20E%2C%20et%20al.%20Evaluation%20of%20circulating%20miRNAs%20%0Ain%20wet%20age-related%20macular%20degeneration%5B%20J%5D.%20Mol%20Vis%2C%202014%2C%2020%3A%201057-%0A1066.
39、Zheng J, Hu L, Cheng J, et al. lncRNA PVT1 promotes the angiogenesis of vascular endothelial cell by targeting miR 26b to activate CTGF/ ANGPT2[ J]. Int J Mol Med, 2018, 42(1): 489-496.Zheng J, Hu L, Cheng J, et al. lncRNA PVT1 promotes the angiogenesis of vascular endothelial cell by targeting miR 26b to activate CTGF/ ANGPT2[ J]. Int J Mol Med, 2018, 42(1): 489-496.
40、郑积富. 长链非编码RNA PVT1通过调控miR-26b促进血管新生的机制研究[D]. 南昌: 南昌大学.
Zheng JF. Mechanism of long-chain non-coding RNA PVT1 promoting angiogenesis by regulating miR-26b[D].Nanchang: Nanchang University.
郑积富. 长链非编码RNA PVT1通过调控miR-26b促进血管新生的机制研究[D]. 南昌: 南昌大学.
Zheng JF. Mechanism of long-chain non-coding RNA PVT1 promoting angiogenesis by regulating miR-26b[D].Nanchang: Nanchang University.
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
中山眼科



中山大学
目录