1、倪逴. 眼的病理解剖基础与临床[ J]. 上海: 上海科学普及出版社
出版, 2002.
NI C. Pathological anatomy and clinical basis of eye[ J]. Shanghai:
Shanghai Science Popularization Press, 2002.倪逴. 眼的病理解剖基础与临床[ J]. 上海: 上海科学普及出版社
出版, 2002.
NI C. Pathological anatomy and clinical basis of eye[ J]. Shanghai:
Shanghai Science Popularization Press, 2002.
2、Avetisov KS, Bakhchieva NA, Avetisov SE, et al. Biomechanical
properties of the lens capsule: a review[ J]. J Mech Behav Biomed
Mater, 2020, 103: 103600.Avetisov KS, Bakhchieva NA, Avetisov SE, et al. Biomechanical
properties of the lens capsule: a review[ J]. J Mech Behav Biomed
Mater, 2020, 103: 103600.
3、Barraquer RI, Michael R, Abreu R, et al. Human lens capsule thickness
as a function of age and location along the sagittal lens perimeter[ J].
Invest Ophthalmol Vis Sci, 2006, 47(5): 2053-2060.Barraquer RI, Michael R, Abreu R, et al. Human lens capsule thickness
as a function of age and location along the sagittal lens perimeter[ J].
Invest Ophthalmol Vis Sci, 2006, 47(5): 2053-2060.
4、Yan Y, Yu H, Sun L, et al. Laminin alpha4 overexpression in the
anterior lens capsule may contribute to the senescence of human lens
epithelial cells in age-related cataract[ J]. Aging (Albany NY), 2019,
11(9): 2699-2723.Yan Y, Yu H, Sun L, et al. Laminin alpha4 overexpression in the
anterior lens capsule may contribute to the senescence of human lens
epithelial cells in age-related cataract[ J]. Aging (Albany NY), 2019,
11(9): 2699-2723.
5、Pakhomova NA, Borisenko TE, Novikov IA, et al. Bioinorganic
markers of a loss of the crystalline lens capsule barrier properties and
consequent age-related cataract development[ J]. Dokl Biol Sci, 2019,487(1): 98-100.Pakhomova NA, Borisenko TE, Novikov IA, et al. Bioinorganic
markers of a loss of the crystalline lens capsule barrier properties and
consequent age-related cataract development[ J]. Dokl Biol Sci, 2019,487(1): 98-100.
6、Raghavan CT, Smuda M, Smith AJ, et al. AGEs in human lens capsule
promote the TGFbeta2-mediated EMT of lens epithelial cells:
implications for age-associated fibrosis[ J]. Aging Cell, 2016, 15(3):
465-476.Raghavan CT, Smuda M, Smith AJ, et al. AGEs in human lens capsule
promote the TGFbeta2-mediated EMT of lens epithelial cells:
implications for age-associated fibrosis[ J]. Aging Cell, 2016, 15(3):
465-476.
7、Martinez G, de Iongh RU. The lens epithelium in ocular health and
disease[ J]. Int J Biochem Cell Biol, 2010, 42(12): 1945-1963.Martinez G, de Iongh RU. The lens epithelium in ocular health and
disease[ J]. Int J Biochem Cell Biol, 2010, 42(12): 1945-1963.
8、Ye Y, Wu M, Qiao Y, et al. Identification and preliminary functional
analysis of two novel congenital cataract associated mutations of Cx46
and Cx50[ J]. Ophthalmic Genet, 2019, 40(5): 428-435.Ye Y, Wu M, Qiao Y, et al. Identification and preliminary functional
analysis of two novel congenital cataract associated mutations of Cx46
and Cx50[ J]. Ophthalmic Genet, 2019, 40(5): 428-435.
9、Berthoud VM, Minogue PJ, Osmolak P, et al. Roles and regulation of
lens epithelial cell connexins[ J]. FEBS Lett, 2014, 588(8): 1297-1303.Berthoud VM, Minogue PJ, Osmolak P, et al. Roles and regulation of
lens epithelial cell connexins[ J]. FEBS Lett, 2014, 588(8): 1297-1303.
10、Bassnett S, Shi Y, Vrensen GF. Biological glass: structural determinants
of eye lens transparency[ J]. Philos Trans R Soc Lond B Biol Sci, 2011,
366(1568): 1250-1264.Bassnett S, Shi Y, Vrensen GF. Biological glass: structural determinants
of eye lens transparency[ J]. Philos Trans R Soc Lond B Biol Sci, 2011,
366(1568): 1250-1264.
11、Wang D, Guo D, Bi H, et al. Zinc oxide nanoparticles inhibit Ca2+-
ATPase expression in human lens epithelial cells under UVB
irradiation[ J]. Toxicol In Vitro, 2013, 27(8): 2117-2126.Wang D, Guo D, Bi H, et al. Zinc oxide nanoparticles inhibit Ca2+-
ATPase expression in human lens epithelial cells under UVB
irradiation[ J]. Toxicol In Vitro, 2013, 27(8): 2117-2126.
12、Huang L, Grami V, Marrero Y, et al. Human lens phospholipid changes
with age and cataract[ J]. Invest Ophthalmol Vis Sci, 2005, 46(5):
1682-1689.Huang L, Grami V, Marrero Y, et al. Human lens phospholipid changes
with age and cataract[ J]. Invest Ophthalmol Vis Sci, 2005, 46(5):
1682-1689.
13、Borchman D, Yappert MC. Lipids and the ocular lens[ J]. J Lipid Res,
2010, 51(9): 2473-2488.Borchman D, Yappert MC. Lipids and the ocular lens[ J]. J Lipid Res,
2010, 51(9): 2473-2488.
14、Borchman D, Yappert MC. Age-related lipid oxidation in human
lenses[ J]. Invest Ophthalmol Vis Sci, 1998, 39(6): 1053-1058.Borchman D, Yappert MC. Age-related lipid oxidation in human
lenses[ J]. Invest Ophthalmol Vis Sci, 1998, 39(6): 1053-1058.
15、Ghosh KS, Chauhan P. Crystallins and their complexes[ J]. Subcell
Biochem, 2019, 93: 439-460.Ghosh KS, Chauhan P. Crystallins and their complexes[ J]. Subcell
Biochem, 2019, 93: 439-460.
16、Yang J, Zhou S, Guo M, et al. Different alpha crystallin expression in
human age-related and congenital cataract lens epithelium[ J]. BMC
Ophthalmol, 2016, 16: 67.Yang J, Zhou S, Guo M, et al. Different alpha crystallin expression in
human age-related and congenital cataract lens epithelium[ J]. BMC
Ophthalmol, 2016, 16: 67.
17、Makley LN, McMenimen KA, DeVree BT, et al. Pharmacological
chaperone for alpha-crystallin partially restores transparency in cataract
models[ J]. Science, 2015, 350(6261): 674-677.Makley LN, McMenimen KA, DeVree BT, et al. Pharmacological
chaperone for alpha-crystallin partially restores transparency in cataract
models[ J]. Science, 2015, 350(6261): 674-677.
18、Song IK, Na S, Paek E, et al. Cataract-associated new mutants S175G/
H181Q of betaBeta2-crystallin and P24S/S31G of gammaD-crystallin
are involved in protein aggregation by structural changes[ J]. Int J Mol
Sci, 2020, 21(18): 6504.Song IK, Na S, Paek E, et al. Cataract-associated new mutants S175G/
H181Q of betaBeta2-crystallin and P24S/S31G of gammaD-crystallin
are involved in protein aggregation by structural changes[ J]. Int J Mol
Sci, 2020, 21(18): 6504.
19、Zhao WJ, Xu J, Chen XJ, et al. Effects of cataract-causing mutations
W59C and W151C on betaB2-crystallin structure, stability and
folding[ J]. Int J Biol Macromol, 2017, 103: 764-770.Zhao WJ, Xu J, Chen XJ, et al. Effects of cataract-causing mutations
W59C and W151C on betaB2-crystallin structure, stability and
folding[ J]. Int J Biol Macromol, 2017, 103: 764-770.
20、Mohr BG, Dobson CM, Garman SC, et al. Electrostatic origin of in
vitro aggregation of human gamma-crystallin[ J]. J Chem Phys, 2013,
139(12): 121914.Mohr BG, Dobson CM, Garman SC, et al. Electrostatic origin of in
vitro aggregation of human gamma-crystallin[ J]. J Chem Phys, 2013,
139(12): 121914.
21、Bloemendal H, de Jong W, Jaenicke R , et al. Ageing and vision:
structure, stability and function of lens crystallins[ J]. Prog Biophys Mol
Biol, 2004, 86(3): 407-485.Bloemendal H, de Jong W, Jaenicke R , et al. Ageing and vision:
structure, stability and function of lens crystallins[ J]. Prog Biophys Mol
Biol, 2004, 86(3): 407-485.
22、Haslbeck M, Franzmann T, Weinfurtner D, et al. Some like it hot: the
structure and function of small heat-shock proteins[ J]. Nat Struct Mol
Biol, 2005, 12(10): 842-846.Haslbeck M, Franzmann T, Weinfurtner D, et al. Some like it hot: the
structure and function of small heat-shock proteins[ J]. Nat Struct Mol
Biol, 2005, 12(10): 842-846.
23、Varma SD, Kovtun S, Hegde KR. Role of ultraviolet irradiation and
oxidative stress in cataract formation-medical prevention by nutritional
antioxidants and metabolic agonists[ J]. Eye Contact Lens, 2011,
37(4): 233-245.Varma SD, Kovtun S, Hegde KR. Role of ultraviolet irradiation and
oxidative stress in cataract formation-medical prevention by nutritional
antioxidants and metabolic agonists[ J]. Eye Contact Lens, 2011,
37(4): 233-245.
24、Babizhayev MA. Mitochondria induce oxidative stress, generation
of reactive oxygen species and redox state unbalance of the eye
lens leading to human cataract formation: disruption of redox lens
organization by phospholipid hydroperoxides as a common basis for
cataract disease[ J]. Cell Biochem Funct, 2011, 29(3): 183-206.Babizhayev MA. Mitochondria induce oxidative stress, generation
of reactive oxygen species and redox state unbalance of the eye
lens leading to human cataract formation: disruption of redox lens
organization by phospholipid hydroperoxides as a common basis for
cataract disease[ J]. Cell Biochem Funct, 2011, 29(3): 183-206.
25、Tsai CF, Wu JY, Hsu YW. Protective effects of rosmarinic acid against
selenite-induced cataract and oxidative damage in rats[ J]. Int J Med Sci,
2019, 16(5): 729-740.Tsai CF, Wu JY, Hsu YW. Protective effects of rosmarinic acid against
selenite-induced cataract and oxidative damage in rats[ J]. Int J Med Sci,
2019, 16(5): 729-740.
26、Zhang GB, Liu ZG, Wang J, et al. MiR-34 promotes apoptosis of lens
epithelial cells in cataract rats via the TGF-beta/Smads signaling
pathway[ J]. Eur Rev Med Pharmacol Sci, 2020, 24(7): 3485-3491.Zhang GB, Liu ZG, Wang J, et al. MiR-34 promotes apoptosis of lens
epithelial cells in cataract rats via the TGF-beta/Smads signaling
pathway[ J]. Eur Rev Med Pharmacol Sci, 2020, 24(7): 3485-3491.
27、Jin X, Jin H, Shi Y, et al. Pyroptosis, a novel mechanism implicated in
cataracts[ J]. Mol Med Rep, 2018, 18(2): 2277-2285.Jin X, Jin H, Shi Y, et al. Pyroptosis, a novel mechanism implicated in
cataracts[ J]. Mol Med Rep, 2018, 18(2): 2277-2285.
28、Sun Y, Xiong L, Wang X, et al. Autophagy inhibition attenuates TGFbeta2-induced epithelial-mesenchymal transition in lens epithelial
cells[ J]. Life Sci, 2021, 265: 118741.Sun Y, Xiong L, Wang X, et al. Autophagy inhibition attenuates TGFbeta2-induced epithelial-mesenchymal transition in lens epithelial
cells[ J]. Life Sci, 2021, 265: 118741.
29、Zhu X, Zhang S, Chang R, et al. New cataract markers: mechanisms of
disease[ J]. Clin Chim Acta, 2017, 472: 41-45.Zhu X, Zhang S, Chang R, et al. New cataract markers: mechanisms of
disease[ J]. Clin Chim Acta, 2017, 472: 41-45.
30、Xia CH, Cheng C, Huang Q, et al. Absence of alpha3 (Cx46) and
alpha8 (Cx50) connexins leads to cataracts by affecting lens inner fiber
cells[ J]. Exp Eye Res, 2006, 83(3): 688-696.Xia CH, Cheng C, Huang Q, et al. Absence of alpha3 (Cx46) and
alpha8 (Cx50) connexins leads to cataracts by affecting lens inner fiber
cells[ J]. Exp Eye Res, 2006, 83(3): 688-696.
31、Ma AS, Grigg JR, Ho G, et al. Sporadic and familial congenital cataracts:
mutational spectrum and new diagnoses using next-generation
sequencing[ J]. Hum Mutat, 2016, 37(4): 371-384.Ma AS, Grigg JR, Ho G, et al. Sporadic and familial congenital cataracts:
mutational spectrum and new diagnoses using next-generation
sequencing[ J]. Hum Mutat, 2016, 37(4): 371-384.
32、Zhou Z, Wang B, Hu S, et al. Genetic variations in GJA3, GJA8,
LIM2, and age-related cataract in the Chinese population: a mutation
screening study[ J]. Mol Vis, 2011, 17: 621-626.Zhou Z, Wang B, Hu S, et al. Genetic variations in GJA3, GJA8,
LIM2, and age-related cataract in the Chinese population: a mutation
screening study[ J]. Mol Vis, 2011, 17: 621-626.
33、Yasmeen A, Riazuddin SA, Kaul H, et al. Autosomal recessive
congenital cataract in consanguineous Pakistani families is associated
with mutations in GALK1[ J]. Mol Vis, 2010, 16: 682-688.Yasmeen A, Riazuddin SA, Kaul H, et al. Autosomal recessive
congenital cataract in consanguineous Pakistani families is associated
with mutations in GALK1[ J]. Mol Vis, 2010, 16: 682-688.
34、Wang Y, Guan H. The Role of DNA Methylation in Lens Development
and Cataract Formation[ J]. Cell Mol Neurobiol, 2017, 37(6): 979-984.Wang Y, Guan H. The Role of DNA Methylation in Lens Development
and Cataract Formation[ J]. Cell Mol Neurobiol, 2017, 37(6): 979-984.
35、Reis LM, Sorokina EA, Dudakova L, et al. Comprehensive phenotypic
and functional analysis of dominant and recessive FOXE3 alleles in
ocular developmental disorders[ J/OL]. Hum Mol Genet, 2021, Epub ahead of print.Reis LM, Sorokina EA, Dudakova L, et al. Comprehensive phenotypic
and functional analysis of dominant and recessive FOXE3 alleles in
ocular developmental disorders[ J/OL]. Hum Mol Genet, 2021, Epub ahead of print.
36、Lu TX, Rothenberg ME. MicroRNA[ J]. J Allergy Clin Immunol, 2018,
141(4): 1202-1207.Lu TX, Rothenberg ME. MicroRNA[ J]. J Allergy Clin Immunol, 2018,
141(4): 1202-1207.
37、Chien KH, Chen SJ, Liu JH, et al. Correlation between microRNA-34a
levels and lens opacity severity in age-related cataracts[ J]. Eye (Lond),
2013, 27(7): 883-888.Chien KH, Chen SJ, Liu JH, et al. Correlation between microRNA-34a
levels and lens opacity severity in age-related cataracts[ J]. Eye (Lond),
2013, 27(7): 883-888.
38、Li Y, Liu S, Zhang F, et al. Expression of the microRNAs hsa-miR-15a
and hsa-miR-16-1 in lens epithelial cells of patients with age-related
cataract[ J]. Int J Clin Exp Med, 2015, 8(2): 2405-2410.Li Y, Liu S, Zhang F, et al. Expression of the microRNAs hsa-miR-15a
and hsa-miR-16-1 in lens epithelial cells of patients with age-related
cataract[ J]. Int J Clin Exp Med, 2015, 8(2): 2405-2410.
39、Qin Y, Zhao J, Min X, et al. MicroRNA-125b inhibits lens epithelial cell
apoptosis by targeting p53 in age-related cataract[ J]. Biochim Biophys
Acta, 2014, 1842(12 Pt A): 2439-2447.Qin Y, Zhao J, Min X, et al. MicroRNA-125b inhibits lens epithelial cell
apoptosis by targeting p53 in age-related cataract[ J]. Biochim Biophys
Acta, 2014, 1842(12 Pt A): 2439-2447.
40、Zhang L, Cheng R, Huang Y. MiR-30a inhibits BECN1-mediated
autophagy in diabetic cataract[ J]. Oncotarget, 2017, 8(44):
77360-77368.Zhang L, Cheng R, Huang Y. MiR-30a inhibits BECN1-mediated
autophagy in diabetic cataract[ J]. Oncotarget, 2017, 8(44):
77360-77368.
41、Zhu J, Gong L, Zhao B. MicroRNA-4328 promotes lens epithelial cell
apoptosis by targeting NLR family, apoptosis inhibitory protein in agerelated cataract[ J]. Cell Biochem Funct, 2020, 38(2): 149-157.Zhu J, Gong L, Zhao B. MicroRNA-4328 promotes lens epithelial cell
apoptosis by targeting NLR family, apoptosis inhibitory protein in agerelated cataract[ J]. Cell Biochem Funct, 2020, 38(2): 149-157.
42、Jin X, Jin H, Shi Y, et al. Long non-coding RNA KCNQ1OT1
promotes cataractogenesis via miR-214 and activation of the caspase-1
pathway[ J]. Cell Physiol Biochem, 2017, 42(1): 295-305.Jin X, Jin H, Shi Y, et al. Long non-coding RNA KCNQ1OT1
promotes cataractogenesis via miR-214 and activation of the caspase-1
pathway[ J]. Cell Physiol Biochem, 2017, 42(1): 295-305.
43、Li G, Song H, Chen L, et al. TUG1 promotes lens epithelial cell
apoptosis by regulating miR-421/caspase-3 axis in age-related
cataract[ J]. Exp Cell Res, 2017, 356(1): 20-27.Li G, Song H, Chen L, et al. TUG1 promotes lens epithelial cell
apoptosis by regulating miR-421/caspase-3 axis in age-related
cataract[ J]. Exp Cell Res, 2017, 356(1): 20-27.
44、Xiang J, Chen Q, Kang L, et al. LncRNA PLCD3-OT1 functions as a
CeRNA to prevent age-related cataract by sponging miR-224-5p and
regulating PLCD3 expression[ J]. Invest Ophthalmol Vis Sci, 2019,
60(14): 4670-4680.Xiang J, Chen Q, Kang L, et al. LncRNA PLCD3-OT1 functions as a
CeRNA to prevent age-related cataract by sponging miR-224-5p and
regulating PLCD3 expression[ J]. Invest Ophthalmol Vis Sci, 2019,
60(14): 4670-4680.
45、Shen Y, Dong LF, Zhou RM, et al. Role of long non-coding RNA MIAT
in proliferation, apoptosis and migration of lens epithelial cells: a
clinical and in vitro study[ J]. J Cell Mol Med, 2016, 20(3): 537-548Shen Y, Dong LF, Zhou RM, et al. Role of long non-coding RNA MIAT
in proliferation, apoptosis and migration of lens epithelial cells: a
clinical and in vitro study[ J]. J Cell Mol Med, 2016, 20(3): 537-548
46、Du WW, Zhang C, Yang W, et al. Identifying and Characterizing
circRNA-Protein Interaction[ J]. Theranostics, 2017, 7(17):
4183-4191.Du WW, Zhang C, Yang W, et al. Identifying and Characterizing
circRNA-Protein Interaction[ J]. Theranostics, 2017, 7(17):
4183-4191.
47、Liu X, Liu B, Zhou M, et al. Circular RNA HIPK3 regulates human
lens epithelial cells proliferation and apoptosis by targeting the
miR-193a/CRYAA axis[ J]. Biochem Biophys Res Commun, 2018,
503(4): 2277-2285.Liu X, Liu B, Zhou M, et al. Circular RNA HIPK3 regulates human
lens epithelial cells proliferation and apoptosis by targeting the
miR-193a/CRYAA axis[ J]. Biochem Biophys Res Commun, 2018,
503(4): 2277-2285.
48、Hu ang CH , Wang Y T, Tsa i CF, et al . Phosphoproteomics
characterization of novel phosphorylated sites of lens proteins from
normal and cataractous human eye lenses[ J]. Mol Vis, 2011, 17:
186-198.Hu ang CH , Wang Y T, Tsa i CF, et al . Phosphoproteomics
characterization of novel phosphorylated sites of lens proteins from
normal and cataractous human eye lenses[ J]. Mol Vis, 2011, 17:
186-198.
49、Lampi KJ, Wilmarth PA, Murray MR, et al. Lens beta-crystallins: the
role of deamidation and related modifications in aging and cataract[ J].
Prog Biophys Mol Biol, 2014, 115(1): 21-31.Lampi KJ, Wilmarth PA, Murray MR, et al. Lens beta-crystallins: the
role of deamidation and related modifications in aging and cataract[ J].
Prog Biophys Mol Biol, 2014, 115(1): 21-31.
50、Chaves JM, Srivastava K, Gupta R, et al. Structural and functional roles
of deamidation and/or truncation of N- or C-termini in human alpha
A-crystallin[ J]. Biochemistry, 2008, 47(38): 10069-10083.Chaves JM, Srivastava K, Gupta R, et al. Structural and functional roles
of deamidation and/or truncation of N- or C-termini in human alpha
A-crystallin[ J]. Biochemistry, 2008, 47(38): 10069-10083.
51、Moafian Z, Khoshaman K, Oryan A, et al. Protective effects of
acetylation on the pathological reactions of the lens crystallins with
homocysteine thiolactone[ J]. PLoS One, 2016, 11(10): e0164139.Moafian Z, Khoshaman K, Oryan A, et al. Protective effects of
acetylation on the pathological reactions of the lens crystallins with
homocysteine thiolactone[ J]. PLoS One, 2016, 11(10): e0164139.
52、Muranova LK, Strelkov SV, Gusev NB. Effect of cataract-associated
mutations in the N-terminal domain of alphaB-crystallin (HspB5)[ J].
Exp Eye Res, 2020, 197: 108091.Muranova LK, Strelkov SV, Gusev NB. Effect of cataract-associated
mutations in the N-terminal domain of alphaB-crystallin (HspB5)[ J].
Exp Eye Res, 2020, 197: 108091.
53、Tipping KW, van Oosten-Hawle P, Hewitt EW, et al. Amyloid fibres:
inert end-stage aggregates or key players in disease?[ J]. Trends
Biochem Sci, 2015, 40(12): 719-727.Tipping KW, van Oosten-Hawle P, Hewitt EW, et al. Amyloid fibres:
inert end-stage aggregates or key players in disease?[ J]. Trends
Biochem Sci, 2015, 40(12): 719-727.
54、Alperstein AM, Ostrander JS, Zhang TO, et al. Amyloid found in
human cataracts with two-dimensional infrared spectroscopy[ J]. Proc
Natl Acad Sci U S A, 2019, 116(14): 6602-6607.Alperstein AM, Ostrander JS, Zhang TO, et al. Amyloid found in
human cataracts with two-dimensional infrared spectroscopy[ J]. Proc
Natl Acad Sci U S A, 2019, 116(14): 6602-6607.