1、Bainbridge JW, Mehat MS, Sundaram V, et al. Long-term effect of gene therapy on Leber's congenital amaurosis[ J]. N Engl J Med, 2015, 372(20): 1887-1897.Bainbridge JW, Mehat MS, Sundaram V, et al. Long-term effect of gene therapy on Leber's congenital amaurosis[ J]. N Engl J Med, 2015, 372(20): 1887-1897.
2、Jacobson SG, Cideciyan AV, Roman AJ, et al. Improvement and decline in vision with gene therapy in childhood blindness[ J]. N Engl J Med, 2015, 372(20): 1920-1926.Jacobson SG, Cideciyan AV, Roman AJ, et al. Improvement and decline in vision with gene therapy in childhood blindness[ J]. N Engl J Med, 2015, 372(20): 1920-1926.
3、Cideciyan AV, Jacobson SG, Beltran WA, et al. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement[ J]. Proc Natl Acad Sci USA, 2013, 110(6): E517-E525.Cideciyan AV, Jacobson SG, Beltran WA, et al. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement[ J]. Proc Natl Acad Sci USA, 2013, 110(6): E517-E525.
4、Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies[ J]. Science, 2014, 345(6194): 1247125.Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies[ J]. Science, 2014, 345(6194): 1247125.
5、WADDELL WR. Organoid differentiation of the fetal lung; a histologic study of the differentiation of mammalian fetal lung in utero and in transplants[ J]. Arch Pathol (Chic), 1949, 47(3): 227-247.WADDELL WR. Organoid differentiation of the fetal lung; a histologic study of the differentiation of mammalian fetal lung in utero and in transplants[ J]. Arch Pathol (Chic), 1949, 47(3): 227-247.
6、Smith E, Cochrane WJ. Cystic organoid teratoma; report of a case[ J]. Can Med Assoc J, 1946, 55:151Smith E, Cochrane WJ. Cystic organoid teratoma; report of a case[ J]. Can Med Assoc J, 1946, 55:151
7、Gierer A, Berking S, Bode H, et al. Regeneration of hydra from reaggregated cells[ J]. Nat New Biol, 1972, 239(91): 98-101.Gierer A, Berking S, Bode H, et al. Regeneration of hydra from reaggregated cells[ J]. Nat New Biol, 1972, 239(91): 98-101.
8、Layer PG, Robitzki A, Rothermel A, et al. Of layers and spheres: the reaggregate approach in tissue engineering[ J]. Trends Neurosci, 2002, 25(3): 131-134.Layer PG, Robitzki A, Rothermel A, et al. Of layers and spheres: the reaggregate approach in tissue engineering[ J]. Trends Neurosci, 2002, 25(3): 131-134.
9、Eiraku M, Takata N, Ishibashi H, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture[ J]. Nature, 2011, 472(7341): 51-56.Eiraku M, Takata N, Ishibashi H, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture[ J]. Nature, 2011, 472(7341): 51-56.
10、Nakano T, Ando S, Takata N, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs[ J]. Cell Stem Cell, 2012, 10(6): 771-785.Nakano T, Ando S, Takata N, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs[ J]. Cell Stem Cell, 2012, 10(6): 771-785.
11、Meyer JS, Shearer RL, Capowski EE, et al. Modeling early retinal development with human embryonic and induced pluripotent stem cells[ J]. Proc Natl Acad Sci U S A, 2009, 106(39): 16698-16703Meyer JS, Shearer RL, Capowski EE, et al. Modeling early retinal development with human embryonic and induced pluripotent stem cells[ J]. Proc Natl Acad Sci U S A, 2009, 106(39): 16698-16703
12、Meyer JS, Howden SE, Wallace KA, et al. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment[ J]. Stem Cells, 2011, 29(8): 1206-1218.Meyer JS, Howden SE, Wallace KA, et al. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment[ J]. Stem Cells, 2011, 29(8): 1206-1218.
13、Ikeda H, Osakada F, Watanabe K, et al. Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells[ J]. Proc Natl Acad Sci U S A, 2005, 102(32): 11331-11336.Ikeda H, Osakada F, Watanabe K, et al. Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells[ J]. Proc Natl Acad Sci U S A, 2005, 102(32): 11331-11336.
14、Osakada F, Jin ZB, Hirami Y, et al. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction[ J]. J Cell Sci, 2009, 122(Pt 17): 3169-3179.Osakada F, Jin ZB, Hirami Y, et al. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction[ J]. J Cell Sci, 2009, 122(Pt 17): 3169-3179.
15、Idelson M, Alper R, Obolensky A, et al. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells[ J]. Cell Stem Cell, 2009, 5(4): 396-408.Idelson M, Alper R, Obolensky A, et al. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells[ J]. Cell Stem Cell, 2009, 5(4): 396-408.
16、Bharti K, Liu W, Csermely T, et al. Alternative promoter use in eye development: the complex role and regulation of the transcription factor MITF[ J]. Development, 2008, 135(6): 1169-1178.Bharti K, Liu W, Csermely T, et al. Alternative promoter use in eye development: the complex role and regulation of the transcription factor MITF[ J]. Development, 2008, 135(6): 1169-1178.
17、Jadhav AP, Mason HA, Cepko CL. Notch 1 inhibits photoreceptor production in the developing mammalian retina[ J]. Development, 2006, 133(5): 913-923.Jadhav AP, Mason HA, Cepko CL. Notch 1 inhibits photoreceptor production in the developing mammalian retina[ J]. Development, 2006, 133(5): 913-923.
18、Hatakeyama J, Kageyama R. Retinal cell fate determination and bHLH factors[ J]. Semin Cell Dev Biol, 2004, 15(1): 83-89.Hatakeyama J, Kageyama R. Retinal cell fate determination and bHLH factors[ J]. Semin Cell Dev Biol, 2004, 15(1): 83-89.
19、Boije H, MacDonald RB, Harris WA. Reconciling competence and transcriptional hierarchies with stochasticity in retinal lineages[ J]. Curr Opin Neurobiol, 2014, 27: 68-74.Boije H, MacDonald RB, Harris WA. Reconciling competence and transcriptional hierarchies with stochasticity in retinal lineages[ J]. Curr Opin Neurobiol, 2014, 27: 68-74.
20、Bassett EA, Wallace VA. Cell fate determination in the vertebrate retina[ J]. Trends Neurosci, 2012, 35(9): 565-573.Bassett EA, Wallace VA. Cell fate determination in the vertebrate retina[ J]. Trends Neurosci, 2012, 35(9): 565-573.
21、Swaroop A , Kim D, Forrest D. Transcriptional regulation of photoreceptor development and homeostasis in the mammalian
retina[ J]. Nat Rev Neurosci, 2010, 11(8): 563-576.Swaroop A , Kim D, Forrest D. Transcriptional regulation of photoreceptor development and homeostasis in the mammalian
retina[ J]. Nat Rev Neurosci, 2010, 11(8): 563-576.
22、Brzezinski JA, Reh TA. Photoreceptor cell fate specification in vertebrates[ J]. Development, 2015, 142(19): 3263-3273.Brzezinski JA, Reh TA. Photoreceptor cell fate specification in vertebrates[ J]. Development, 2015, 142(19): 3263-3273.
23、Lamba DA, Karl MO, Ware CB, et al. Efficient generation of retinal progenitor cells from human embryonic stem cells[ J]. Proc Natl Acad Sci USA, 2006, 103(34): 12769-12774.Lamba DA, Karl MO, Ware CB, et al. Efficient generation of retinal progenitor cells from human embryonic stem cells[ J]. Proc Natl Acad Sci USA, 2006, 103(34): 12769-12774.
24、Lamba DA, Gust J, Reh TA. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crxdeficient mice[ J]. Cell Stem Cell, 2009, 4(1): 73-79.Lamba DA, Gust J, Reh TA. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crxdeficient mice[ J]. Cell Stem Cell, 2009, 4(1): 73-79.
25、Gonzalez-Cordero A, West EL, Pearson RA, et al. Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina[ J]. Nat Biotechnol, 2013, 31(8): 741-747.Gonzalez-Cordero A, West EL, Pearson RA, et al. Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina[ J]. Nat Biotechnol, 2013, 31(8): 741-747.
26、Gonzalez-Cordero A, Kruczek K, Naeem A, et al. Recapitulation of human retinal development from human pluripotent stem cells generates transplantable populations of cone photoreceptors[ J]. Stem Cell Reports, 2017, 9(3): 820-837.Gonzalez-Cordero A, Kruczek K, Naeem A, et al. Recapitulation of human retinal development from human pluripotent stem cells generates transplantable populations of cone photoreceptors[ J]. Stem Cell Reports, 2017, 9(3): 820-837.
27、Zhong X, Gutierrez C, Xue T, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs[ J]. Nat Commun, 2014, 5: 4047Zhong X, Gutierrez C, Xue T, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs[ J]. Nat Commun, 2014, 5: 4047
28、Pan D, Xia XX, Zhou H, et al. COCO enhances the efficiency of photoreceptor precursor differentiation in early human embryonic stem cell-derived retinal organoids[ J]. Stem Cell Res Ther, 2020, 11(1): 366.Pan D, Xia XX, Zhou H, et al. COCO enhances the efficiency of photoreceptor precursor differentiation in early human embryonic stem cell-derived retinal organoids[ J]. Stem Cell Res Ther, 2020, 11(1): 366.
29、Deng WL, Gao ML, Lei XL, et al. Gene correction reverses ciliopathy and photoreceptor loss in iPSC-derived retinal organoids from retinitis pigmentosa patients[ J]. Stem Cell Reports, 2018, 10(4): 1267-1281Deng WL, Gao ML, Lei XL, et al. Gene correction reverses ciliopathy and photoreceptor loss in iPSC-derived retinal organoids from retinitis pigmentosa patients[ J]. Stem Cell Reports, 2018, 10(4): 1267-1281
30、樊帆, 吴继红, 罗怡. 人诱导多潜能干细胞与CRISPR/Cas9基因编辑技术在眼遗传病的应用研究进展[ J]. 中华眼科杂志, 2021, 57(9): 712-716.
FAN Fan, WU Jihong, LUO Yi. Current researches and prospects of human induced pluripotent stem cells and gene editing technology of CRISPR/Cas9 in inherited ocular diseases[ J]. Chinese Journal of Ophthalmology, 2021, 57(9): 712-716.樊帆, 吴继红, 罗怡. 人诱导多潜能干细胞与CRISPR/Cas9基因编辑技术在眼遗传病的应用研究进展[ J]. 中华眼科杂志, 2021, 57(9): 712-716.
FAN Fan, WU Jihong, LUO Yi. Current researches and prospects of human induced pluripotent stem cells and gene editing technology of CRISPR/Cas9 in inherited ocular diseases[ J]. Chinese Journal of Ophthalmology, 2021, 57(9): 712-716.
31、Zhang X, Wang W, Jin ZB. Retinal organoids as models for development and diseases[ J]. Cell Regen, 2021, 10(1): 33.Zhang X, Wang W, Jin ZB. Retinal organoids as models for development and diseases[ J]. Cell Regen, 2021, 10(1): 33.
32、Yu W, Wu Z. In Vivo Applications of CRISPR-based genome editing in the retina[ J]. Front Cell Dev Biol, 2018, 6: 53.Yu W, Wu Z. In Vivo Applications of CRISPR-based genome editing in the retina[ J]. Front Cell Dev Biol, 2018, 6: 53.
33、Lane A, Jovanovic K, Shortall C, et al. Modeling and rescue of RP2 retinitis pigmentosa using iPSC-derived retinal organoids[ J]. Stem Cell Reports, 2020, 15(1): 67-79.Lane A, Jovanovic K, Shortall C, et al. Modeling and rescue of RP2 retinitis pigmentosa using iPSC-derived retinal organoids[ J]. Stem Cell Reports, 2020, 15(1): 67-79.
34、Zheng C, Schneider JW, Hsieh J. Role of RB1 in human embryonic stem cell-derived retinal organoids[ J]. Dev Biol, 2020, 462(2): 197-207.Zheng C, Schneider JW, Hsieh J. Role of RB1 in human embryonic stem cell-derived retinal organoids[ J]. Dev Biol, 2020, 462(2): 197-207.
35、Deng X, Iwagawa T, Fukushima M, et al. Characterization of humaninduced pluripotent stem cells carrying homozygous RB1 gene deletion[ J]. Genes Cells, 2020, 25(7): 510-517.Deng X, Iwagawa T, Fukushima M, et al. Characterization of humaninduced pluripotent stem cells carrying homozygous RB1 gene deletion[ J]. Genes Cells, 2020, 25(7): 510-517.
36、Richter S, Vandezande K, Chen N, et al. Sensitive and efficient detection of RB1 gene mutations enhances care for families with retinoblastoma[ J]. Am J Hum Genet, 2003, 72(2): 253-269.Richter S, Vandezande K, Chen N, et al. Sensitive and efficient detection of RB1 gene mutations enhances care for families with retinoblastoma[ J]. Am J Hum Genet, 2003, 72(2): 253-269.
37、Xu XL, Fang Y, Lee TC, et al. Retinoblastoma has properties of a cone precursor tumor and depends upon cone-specific MDM2 signaling[ J]. Cell, 2009, 137(6): 1018-1031.Xu XL, Fang Y, Lee TC, et al. Retinoblastoma has properties of a cone precursor tumor and depends upon cone-specific MDM2 signaling[ J]. Cell, 2009, 137(6): 1018-1031.
38、Xu XL, Singh HP, Wang L, et al. Rb suppresses human cone-precursorderived retinoblastoma tumours[ J]. Nature, 2014, 514(7522): 385-388.Xu XL, Singh HP, Wang L, et al. Rb suppresses human cone-precursorderived retinoblastoma tumours[ J]. Nature, 2014, 514(7522): 385-388.
39、Liu H, Zhang Y, Zhang YY, et al. Human embryonic stem cell-derived organoid retinoblastoma reveals a cancerous origin[ J]. Proc Natl Acad Sci U S A, 2020, 117(52): 33628-33638.Liu H, Zhang Y, Zhang YY, et al. Human embryonic stem cell-derived organoid retinoblastoma reveals a cancerous origin[ J]. Proc Natl Acad Sci U S A, 2020, 117(52): 33628-33638.
40、VanderWall KB, Huang KC, Pan Y, et al. Retinal ganglion cells with a glaucoma OPTN (E50K) mutation exhibitneurodegenerative phenotypes when derived from three-dimensional retinal organoids[ J]. Stem Cell Reports, 2020, 15(1): 52-66.VanderWall KB, Huang KC, Pan Y, et al. Retinal ganglion cells with a glaucoma OPTN (E50K) mutation exhibitneurodegenerative phenotypes when derived from three-dimensional retinal organoids[ J]. Stem Cell Reports, 2020, 15(1): 52-66.
41、Li YP, Deng WL, Jin ZB. Modeling retinitis pigmentosa through patientderived retinal organoids[ J]. STAR Protoc, 2021, 2(2): 100438.Li YP, Deng WL, Jin ZB. Modeling retinitis pigmentosa through patientderived retinal organoids[ J]. STAR Protoc, 2021, 2(2): 100438.
42、Buskin A, Zhu L, Chichagova V, et al. Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa[ J]. Nat Commun, 2018, 9(1): 4234.Buskin A, Zhu L, Chichagova V, et al. Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa[ J]. Nat Commun, 2018, 9(1): 4234.
43、Lv JN, Zhou GH, Chen X , et al. Targeted RP9 ablation and mutagenesis in mouse photoreceptor cells by CRISPR-Cas9[ J]. Sci
Rep, 2017, 7: 43062.
Lv JN, Zhou GH, Chen X , et al. Targeted RP9 ablation and mutagenesis in mouse photoreceptor cells by CRISPR-Cas9[ J]. Sci
Rep, 2017, 7: 43062.
44、Sun LF, Ma Y, Ji YY, et al. Circular Rims2 deficiency causes retinal degeneration[ J]. Adv Biol (Weinh), 2021, 5(12): e2100906.Sun LF, Ma Y, Ji YY, et al. Circular Rims2 deficiency causes retinal degeneration[ J]. Adv Biol (Weinh), 2021, 5(12): e2100906.
45、Chen XJ, Zhang CJ, Wang YH, et al. Retinal degeneration caused by Ago2 disruption[ J]. Invest Ophthalmol Vis Sci, 2021,62(12): 14.Chen XJ, Zhang CJ, Wang YH, et al. Retinal degeneration caused by Ago2 disruption[ J]. Invest Ophthalmol Vis Sci, 2021,62(12): 14.
46、Kaplan HJ, Tezel TH, Berger AS, et al. Human photoreceptor transplantation in retinitis pigmentosa. A safety study[ J]. Arch Ophthalmol, 1997, 115(9): 1168-1172.Kaplan HJ, Tezel TH, Berger AS, et al. Human photoreceptor transplantation in retinitis pigmentosa. A safety study[ J]. Arch Ophthalmol, 1997, 115(9): 1168-1172.
47、MacLaren RE, Pearson RA, MacNeil A, et al. Retinal repair by transplantation of photoreceptor precursors[ J]. Nature, 2006, 444(7116): 203-207.MacLaren RE, Pearson RA, MacNeil A, et al. Retinal repair by transplantation of photoreceptor precursors[ J]. Nature, 2006, 444(7116): 203-207.
48、Pearson RA, Barber AC, Rizzi M, et al. Restoration of vision after transplantation of photoreceptors[ J]. Nature, 2012,485(7396): 99-103Pearson RA, Barber AC, Rizzi M, et al. Restoration of vision after transplantation of photoreceptors[ J]. Nature, 2012,485(7396): 99-103
49、Tucker BA, Park IH, Qi SD, et al. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice[ J]. PLoS One, 2011, 6(4): e18992.Tucker BA, Park IH, Qi SD, et al. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice[ J]. PLoS One, 2011, 6(4): e18992.
50、Santos-Ferreira T, V?lkner M, Borsch O, et al. Stem cell-derived photoreceptor transplants differentially integrate into mouse models of cone-rod dystrophy[ J]. Invest Ophthalmol Vis Sci, 2016, 57(7): 3509-3520.Santos-Ferreira T, V?lkner M, Borsch O, et al. Stem cell-derived photoreceptor transplants differentially integrate into mouse models of cone-rod dystrophy[ J]. Invest Ophthalmol Vis Sci, 2016, 57(7): 3509-3520.
51、Kruczek K, Gonzalez-Cordero A, Goh D, et al. Differentiation and transplantation of embryonic stem cell-derived cone photoreceptors into a mouse model of end-stage retinal degeneration[ J]. Stem Cell Reports, 2017, 8(6): 1659-1674.Kruczek K, Gonzalez-Cordero A, Goh D, et al. Differentiation and transplantation of embryonic stem cell-derived cone photoreceptors into a mouse model of end-stage retinal degeneration[ J]. Stem Cell Reports, 2017, 8(6): 1659-1674.
52、Iraha S, Tu HY, Yamasaki S, et al. Establishment of immunodeficient retinal degeneration model mice and functional maturation of human ESC-derived retinal sheets after transplantation[ J]. Stem Cell Reports, 2018, 10(3): 1059-1074.Iraha S, Tu HY, Yamasaki S, et al. Establishment of immunodeficient retinal degeneration model mice and functional maturation of human ESC-derived retinal sheets after transplantation[ J]. Stem Cell Reports, 2018, 10(3): 1059-1074.
53、Xian B, Luo Z, Li K , et al. Dexamethasone provides effective immunosuppression for improved survival of retinal organoids after epiretinal transplantation[ J]. Stem Cells Int, 2019, 2019: 7148032.Xian B, Luo Z, Li K , et al. Dexamethasone provides effective immunosuppression for improved survival of retinal organoids after epiretinal transplantation[ J]. Stem Cells Int, 2019, 2019: 7148032.
54、Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cellderived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies[ J]. Lancet, 2015, 385(9967): 509-516.Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cellderived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies[ J]. Lancet, 2015, 385(9967): 509-516.
55、da Cruz L, Fynes K, Georgiadis O, et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in agerelated macular degeneration[ J]. Nat Biotechnol, 2018, 36(4): 328-337da Cruz L, Fynes K, Georgiadis O, et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in agerelated macular degeneration[ J]. Nat Biotechnol, 2018, 36(4): 328-337
56、Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report[ J]. Lancet, 2012, 379(9817): 713-720.Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report[ J]. Lancet, 2012, 379(9817): 713-720.
57、Jeon CJ, Strettoi E, Masland RH. The major cell populations of the mouse retina[ J]. J Neurosci, 1998, 18(21): 8936-8946.Jeon CJ, Strettoi E, Masland RH. The major cell populations of the mouse retina[ J]. J Neurosci, 1998, 18(21): 8936-8946.
58、Jayakody SA, Gonzalez-Cordero A, Ali RR, et al. Cellular strategies for retinal repair by photoreceptor replacement[ J]. Prog Retin Eye Res, 2015, 46: 31-66.Jayakody SA, Gonzalez-Cordero A, Ali RR, et al. Cellular strategies for retinal repair by photoreceptor replacement[ J]. Prog Retin Eye Res, 2015, 46: 31-66.
59、McCaffrery P, Posch KC, Napoli JL, et al. Changing patterns of the retinoic acid system in the developing retina[ J]. Dev Biol, 1993, 158(2): 390-399.McCaffrery P, Posch KC, Napoli JL, et al. Changing patterns of the retinoic acid system in the developing retina[ J]. Dev Biol, 1993, 158(2): 390-399.
60、Assawachananont J, Mandai M, Okamoto S, et al. Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice[J]. Stem Cell Reports, 2014, 2(5): 662-674.Assawachananont J, Mandai M, Okamoto S, et al. Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice[J]. Stem Cell Reports, 2014, 2(5): 662-674.
61、Mandai M, Homma K, Okamoto S, et al. Adequate time window and environmental factors supporting retinal graft cell survival in RD mice[ J]. Cell Med, 2012, 4(1): 45-54.Mandai M, Homma K, Okamoto S, et al. Adequate time window and environmental factors supporting retinal graft cell survival in RD mice[ J]. Cell Med, 2012, 4(1): 45-54.
62、Shirai H, Mandai M, Matsushita K, et al. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration[J]. Proc Natl Acad Sci U S A, 2016, 113(1): E81-E90.Shirai H, Mandai M, Matsushita K, et al. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration[J]. Proc Natl Acad Sci U S A, 2016, 113(1): E81-E90.
63、Mead B, Logan A, Berry M, et al. Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury[ J]. Invest Ophthalmol Vis Sci, 2013, 54(12): 7544-7556.Mead B, Logan A, Berry M, et al. Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury[ J]. Invest Ophthalmol Vis Sci, 2013, 54(12): 7544-7556.
64、Cho JH, Mao CA, Klein WH. Adult mice transplanted with embryonic retinal progenitor cells: new approach for repairing damaged optic nerves[ J]. Mol Vis, 2012, 18: 2658-2672.Cho JH, Mao CA, Klein WH. Adult mice transplanted with embryonic retinal progenitor cells: new approach for repairing damaged optic nerves[ J]. Mol Vis, 2012, 18: 2658-2672.
65、Singhal S, Bhatia B, Jayaram H, et al. Human Müller glia with stem cell characteristics differentiate into retinal ganglion cell (RGC) precursors in vitro and partially restore RGC function in vivo following transplantation[ J]. Stem Cells Transl Med, 2012, 1(3): 188-199.Singhal S, Bhatia B, Jayaram H, et al. Human Müller glia with stem cell characteristics differentiate into retinal ganglion cell (RGC) precursors in vitro and partially restore RGC function in vivo following transplantation[ J]. Stem Cells Transl Med, 2012, 1(3): 188-199.
66、Venugopalan P, Wang Y, Nguyen T, et al. Transplanted neurons integrate into adult retinas and respond to light[ J]. Nat Commun, 2016, 7: 10472.Venugopalan P, Wang Y, Nguyen T, et al. Transplanted neurons integrate into adult retinas and respond to light[ J]. Nat Commun, 2016, 7: 10472.
67、Lim JH, Stafford BK, Nguyen PL, et al. Neural activity promotes longdistance, target-specific regeneration of adult retinal axons[ J]. Nat Neurosci, 2016, 19(8): 1073-1084.Lim JH, Stafford BK, Nguyen PL, et al. Neural activity promotes longdistance, target-specific regeneration of adult retinal axons[ J]. Nat Neurosci, 2016, 19(8): 1073-1084.
68、Hambright D, Park KY, Brooks M, et al. Long-term survival and differentiation of retinal neurons derived from human embryonic stem cell lines in un-immunosuppressed mouse retina[ J]. Mol Vis, 2012, 18: 920-936.Hambright D, Park KY, Brooks M, et al. Long-term survival and differentiation of retinal neurons derived from human embryonic stem cell lines in un-immunosuppressed mouse retina[ J]. Mol Vis, 2012, 18: 920-936.
69、Laver CRJ, Matsubara JA. Structural divergence of essential triad ribbon synapse proteins among placental mammals—implications for preclinical trials in photoreceptor transplantation therapy[ J]. Exp Eye Res, 2017, 159: 156-167.Laver CRJ, Matsubara JA. Structural divergence of essential triad ribbon synapse proteins among placental mammals—implications for preclinical trials in photoreceptor transplantation therapy[ J]. Exp Eye Res, 2017, 159: 156-167.
70、Mandai M, Fujii M, Hashiguchi T, et al. iPSC-derived retina transplants improve vision in rd1 end-stage retinal-degeneration mice[ J]. Stem Cell Reports, 2017, 8(4): 1112-1113.Mandai M, Fujii M, Hashiguchi T, et al. iPSC-derived retina transplants improve vision in rd1 end-stage retinal-degeneration mice[ J]. Stem Cell Reports, 2017, 8(4): 1112-1113.
71、Wang J, He X, Meng H, et al. Robust myelination of regenerated axons induced by combined manipulations of GPR17 and microglia[ J]. Neuron, 2020, 108(5): 876-886.Wang J, He X, Meng H, et al. Robust myelination of regenerated axons induced by combined manipulations of GPR17 and microglia[ J]. Neuron, 2020, 108(5): 876-886.
72、Little CW, Castillo B, DiLoreto DA, et al. Transplantation of human fetal retinal pigment epithelium rescues photoreceptor cells from degeneration in the Royal College of Surgeons rat retina[ J]. Invest Ophthalmol Vis Sci, 1996, 37(1): 204-211Little CW, Castillo B, DiLoreto DA, et al. Transplantation of human fetal retinal pigment epithelium rescues photoreceptor cells from degeneration in the Royal College of Surgeons rat retina[ J]. Invest Ophthalmol Vis Sci, 1996, 37(1): 204-211
73、Pinilla I, Cuenca N, Sauvé Y, et al. Preservation of outer retina and its synaptic connectivity following subretinal injections of human RPE cells in the Royal College of Surgeons rat[ J]. Exp Eye Res, 2007, 85(3): 381-392.Pinilla I, Cuenca N, Sauvé Y, et al. Preservation of outer retina and its synaptic connectivity following subretinal injections of human RPE cells in the Royal College of Surgeons rat[ J]. Exp Eye Res, 2007, 85(3): 381-392.
74、Sun J, Mandai M, Kamao H, et al. Protective effects of human iPSderived retinal pigmented epithelial cells in comparison with human mesenchymal stromal cells and human neural stem cells on the degenerating retina in rd1 mice[ J]. Stem Cells, 2015, 33(5): 1543-1553.Sun J, Mandai M, Kamao H, et al. Protective effects of human iPSderived retinal pigmented epithelial cells in comparison with human mesenchymal stromal cells and human neural stem cells on the degenerating retina in rd1 mice[ J]. Stem Cells, 2015, 33(5): 1543-1553.
75、Jin ZB, Gao ML, Deng WL, et al. Stemming retinal regeneration with pluripotent stem cells[ J]. Prog Retin Eye Res, 2019, 69: 38-56.Jin ZB, Gao ML, Deng WL, et al. Stemming retinal regeneration with pluripotent stem cells[ J]. Prog Retin Eye Res, 2019, 69: 38-56.
76、Nazari H, Zhang L, Zhu D, et al. Stem cell based therapies for agerelated macular degeneration: The promises and the challenges[ J]. Prog Retin Eye Res, 2015, 48: 1-39.Nazari H, Zhang L, Zhu D, et al. Stem cell based therapies for agerelated macular degeneration: The promises and the challenges[ J]. Prog Retin Eye Res, 2015, 48: 1-39.
77、Newsome DA , Rodrigues MM, Machemer R . Human massive periretinal proliferation. In v itro characteristics of cellular components[ J]. Arch Ophthalmol, 1981, 99(5): 873-880Newsome DA , Rodrigues MM, Machemer R . Human massive periretinal proliferation. In v itro characteristics of cellular components[ J]. Arch Ophthalmol, 1981, 99(5): 873-880
78、Rapaport DH, Rakic P, Yasamura D, et al. Genesis of the retinal pigment epithelium in the macaque monkey[ J]. J Comp Neurol, 1995, 363(3): 359-376.Rapaport DH, Rakic P, Yasamura D, et al. Genesis of the retinal pigment epithelium in the macaque monkey[ J]. J Comp Neurol, 1995, 363(3): 359-376.
79、Schwartz SD, Tan G, Hosseini H, et al. Subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium for the treatment of macular degeneration: an assessment at 4 years[ J]. Invest Ophthalmol Vis Sci, 2016, 57(5): ORSFc1-ORSFc9.Schwartz SD, Tan G, Hosseini H, et al. Subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium for the treatment of macular degeneration: an assessment at 4 years[ J]. Invest Ophthalmol Vis Sci, 2016, 57(5): ORSFc1-ORSFc9.
80、Salero E, Blenkinsop TA, Corneo B, et al. Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives[ J]. Cell Stem Cell, 2012, 10(1): 88-95.Salero E, Blenkinsop TA, Corneo B, et al. Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives[ J]. Cell Stem Cell, 2012, 10(1): 88-95.
81、Davis RJ, Alam NM, Zhao C, et al. The developmental stage of adult human stem cell-derived retinal pigment epithelium cells influences transplant efficacy for vision rescue[ J]. Stem Cell Reports, 2017, 9(1): 42-49.Davis RJ, Alam NM, Zhao C, et al. The developmental stage of adult human stem cell-derived retinal pigment epithelium cells influences transplant efficacy for vision rescue[ J]. Stem Cell Reports, 2017, 9(1): 42-49.
82、Singh RK, Nasonkin IO. Limitations and promise of retinal tissue from human pluripotent stem cells for developing therapies of blindness[ J]. Front Cell Neurosci, 2020, 14: 179.Singh RK, Nasonkin IO. Limitations and promise of retinal tissue from human pluripotent stem cells for developing therapies of blindness[ J]. Front Cell Neurosci, 2020, 14: 179.
83、Souied E, Pulido J, Staurenghi G. Autologous induced stem-cellderived retinal cells for macular degeneration[ J]. N Engl J Med, 2017, 377(8): 792.Souied E, Pulido J, Staurenghi G. Autologous induced stem-cellderived retinal cells for macular degeneration[ J]. N Engl J Med, 2017, 377(8): 792.
84、Tezel TH, Del Priore LV, Kaplan HJ. Reengineering of aged Bruch's membrane to enhance retinal pigment epithelium repopulation[ J]. Invest Ophthalmol Vis Sci, 2004, 45(9): 3337-3348.Tezel TH, Del Priore LV, Kaplan HJ. Reengineering of aged Bruch's membrane to enhance retinal pigment epithelium repopulation[ J]. Invest Ophthalmol Vis Sci, 2004, 45(9): 3337-3348.
85、NOELL WK. The impairment of visual cell structure by iodoacetate[ J]. J Cell Comp Physiol, 1952, 40(1): 25-55.NOELL WK. The impairment of visual cell structure by iodoacetate[ J]. J Cell Comp Physiol, 1952, 40(1): 25-55.
86、Fuller D, Machemer R, Knighton RW. Retinal damage produced by intraocular fiber optic light[ J]. Vision Res, 1980, 20(12): 1055-1072.Fuller D, Machemer R, Knighton RW. Retinal damage produced by intraocular fiber optic light[ J]. Vision Res, 1980, 20(12): 1055-1072.
87、Strazzeri JM, Hunter JJ, Masella BD, et al. Focal damage to macaque photoreceptors produces persistent visual loss[ J]. Exp Eye Res, 2014, 119: 88-96.Strazzeri JM, Hunter JJ, Masella BD, et al. Focal damage to macaque photoreceptors produces persistent visual loss[ J]. Exp Eye Res, 2014, 119: 88-96.
88、Gao G, He L, Liu S, et al. Establishment of a rapid lesion-controllable retinal degeneration monkey model for preclinical stem cell therapy[ J]. Cells, 2020, 9(11): 2468.Gao G, He L, Liu S, et al. Establishment of a rapid lesion-controllable retinal degeneration monkey model for preclinical stem cell therapy[ J]. Cells, 2020, 9(11): 2468.
89、Goldstein IM, Ostwald P, Roth S. Nitric oxide: a review of its role in retinal function and disease[ J]. Vision Res, 1996, 36(18): 2979-2994.Goldstein IM, Ostwald P, Roth S. Nitric oxide: a review of its role in retinal function and disease[ J]. Vision Res, 1996, 36(18): 2979-2994.
90、Opatrilova R , Kubatka P, Caprnda M, et al. Nitric oxide in the pathophysiology of retinopathy: evidences from preclinical and clinical researches[ J]. Acta Ophthalmol, 2018, 96(3): 222-231.Opatrilova R , Kubatka P, Caprnda M, et al. Nitric oxide in the pathophysiology of retinopathy: evidences from preclinical and clinical researches[ J]. Acta Ophthalmol, 2018, 96(3): 222-231.
91、Luo Z, Li K , Li K , et al. Establishing a surgical procedure for rhesus epiretinal scaffold implantation with HiPSC-derived retinal progenitors[ J]. Stem Cells Int, 2018, 2018: 9437041Luo Z, Li K , Li K , et al. Establishing a surgical procedure for rhesus epiretinal scaffold implantation with HiPSC-derived retinal progenitors[ J]. Stem Cells Int, 2018, 2018: 9437041
92、Becker S, Eastlake K, Jayaram H, et al. Allogeneic transplantation of müller-derived retinal ganglion cells improves retinal function in a feline model of ganglion cell depletion[ J]. Stem Cells Transl Med, 2016, 5(2): 192-205.Becker S, Eastlake K, Jayaram H, et al. Allogeneic transplantation of müller-derived retinal ganglion cells improves retinal function in a feline model of ganglion cell depletion[ J]. Stem Cells Transl Med, 2016, 5(2): 192-205.
93、Matsumoto B, Blanks JC, Ryan SJ. Topographic variations in the rabbit and primate internal limiting membrane[ J]. Invest Ophthalmol Vis Sci, 1984, 25(1): 71-82.Matsumoto B, Blanks JC, Ryan SJ. Topographic variations in the rabbit and primate internal limiting membrane[ J]. Invest Ophthalmol Vis Sci, 1984, 25(1): 71-82.
94、Li K, Zhong X, Yang S, et al. HiPSC-derived retinal ganglion cells grow dendritic arbors and functional axons on a tissue-engineered scaffold[ J]. Acta Biomater, 2017, 54: 117-127.Li K, Zhong X, Yang S, et al. HiPSC-derived retinal ganglion cells grow dendritic arbors and functional axons on a tissue-engineered scaffold[ J]. Acta Biomater, 2017, 54: 117-127.
95、Pearson RA, Barber AC, West EL, et al. Targeted disruption of outer limiting membrane junctional proteins (Crb1 and ZO-1) increases integration of transplanted photoreceptor precursors into the adult wild-type and degenerating retina[ J]. Cell Transplant, 2010, 19(4): 487-503.Pearson RA, Barber AC, West EL, et al. Targeted disruption of outer limiting membrane junctional proteins (Crb1 and ZO-1) increases integration of transplanted photoreceptor precursors into the adult wild-type and degenerating retina[ J]. Cell Transplant, 2010, 19(4): 487-503.
96、Lewis GP, Fisher SK. Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression[ J]. Int Rev Cytol, 2003, 230: 263-290.Lewis GP, Fisher SK. Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression[ J]. Int Rev Cytol, 2003, 230: 263-290.
97、Ivastinovic D, Langmann G, Asslaber M, et al. Distribution of glial fibrillary acidic protein accumulation after retinal tack insertion for intraocular fixation of epiretinal implants[ J]. Acta Ophthalmol, 2012, 90(5): e416-e417.Ivastinovic D, Langmann G, Asslaber M, et al. Distribution of glial fibrillary acidic protein accumulation after retinal tack insertion for intraocular fixation of epiretinal implants[ J]. Acta Ophthalmol, 2012, 90(5): e416-e417.
98、Hippert C, Graca AB, Pearson RA. Gliosis can impede integration following photoreceptor transplantation into the diseased retina[ J]. Adv Exp Med Biol, 2016, 854: 579-585.Hippert C, Graca AB, Pearson RA. Gliosis can impede integration following photoreceptor transplantation into the diseased retina[ J]. Adv Exp Med Biol, 2016, 854: 579-585.
99、Puustj?rvi TJ, Ter?svirta ME. Retinal fixation of traumatic retinal detachment with metallic tacks: a case report with 10 years' followup[ J]. Retina, 2001, 21(1): 54-56.Puustj?rvi TJ, Ter?svirta ME. Retinal fixation of traumatic retinal detachment with metallic tacks: a case report with 10 years' followup[ J]. Retina, 2001, 21(1): 54-56.
100、Bird AC, Phillips RL, Hageman GS. Geographic atrophy: a histopathological assessment[ J]. JAMA Ophthalmol, 2014, 132(3):
338-345.Bird AC, Phillips RL, Hageman GS. Geographic atrophy: a histopathological assessment[ J]. JAMA Ophthalmol, 2014, 132(3):
338-345.
101、Yang S, Xian B, Li K, et al. Alpha 1-antitrypsin inhibits microglia activation and facilitates the survival of iPSC grafts in hypertension mouse model[ J]. Cell Immunol, 2018, 328: 49-57.Yang S, Xian B, Li K, et al. Alpha 1-antitrypsin inhibits microglia activation and facilitates the survival of iPSC grafts in hypertension mouse model[ J]. Cell Immunol, 2018, 328: 49-57.
102、Sohn EH, Jiao C, Kaalberg E, et al. Allogenic iPSC-derived RPE cell transplants induce immune response in pigs: a pilot study[ J]. Sci Rep, 2015, 5: 11791.Sohn EH, Jiao C, Kaalberg E, et al. Allogenic iPSC-derived RPE cell transplants induce immune response in pigs: a pilot study[ J]. Sci Rep, 2015, 5: 11791.
103、Lai CC, Gouras P, Doi K, et al. Local immunosuppression prolongs survival of RPE xenografts labeled by retroviral gene transfer[ J]. Invest Ophthalmol Vis Sci, 2000, 41(10): 3134-3141.Lai CC, Gouras P, Doi K, et al. Local immunosuppression prolongs survival of RPE xenografts labeled by retroviral gene transfer[ J]. Invest Ophthalmol Vis Sci, 2000, 41(10): 3134-3141.
104、Kiddee W, Trope GE, Sheng L, et al. Intraocular pressure monitoring post intravitreal steroids: a systematic review[ J]. Surv Ophthalmol, 2013, 58(4): 291-310.Kiddee W, Trope GE, Sheng L, et al. Intraocular pressure monitoring post intravitreal steroids: a systematic review[ J]. Surv Ophthalmol, 2013, 58(4): 291-310.
105、Decembrini S, Martin C, Sennlaub F, et al. Cone genesis tracing by the Chrnb4-EGFP mouse line: evidences of cellular material fusion after cone precursor transplantation[ J]. Mol Ther, 2017, 25(3): 634-653.Decembrini S, Martin C, Sennlaub F, et al. Cone genesis tracing by the Chrnb4-EGFP mouse line: evidences of cellular material fusion after cone precursor transplantation[ J]. Mol Ther, 2017, 25(3): 634-653.
106、Ortin-Martinez A, Tsai EL, Nickerson PE, et al. A reinterpretation of cell transplantation: GFP transfer from donor to host photoreceptors[ J]. Stem Cells, 2017, 35(4): 932-939.Ortin-Martinez A, Tsai EL, Nickerson PE, et al. A reinterpretation of cell transplantation: GFP transfer from donor to host photoreceptors[ J]. Stem Cells, 2017, 35(4): 932-939.
107、Liu YV, Sodhi SK, Xue G, et al. Quantifiable in vivo imaging biomarkers of retinal regeneration by photoreceptor cell transplantation[ J]. Transl Vis Sci Technol, 2020, 9(7): 5.Liu YV, Sodhi SK, Xue G, et al. Quantifiable in vivo imaging biomarkers of retinal regeneration by photoreceptor cell transplantation[ J]. Transl Vis Sci Technol, 2020, 9(7): 5.
108、Zhang H, Su B, Jiao L, et al. Transplantation of GMP-grade human iPSC-derived retinal pigment epithelial cells in rodent model: the first pre-clinical study for safety and efficacy in China[ J]. Ann Transl Med, 2021, 9(3): 245.Zhang H, Su B, Jiao L, et al. Transplantation of GMP-grade human iPSC-derived retinal pigment epithelial cells in rodent model: the first pre-clinical study for safety and efficacy in China[ J]. Ann Transl Med, 2021, 9(3): 245.
109、Wiley LA, Burnight ER , DeLuca AP, et al. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness[ J]. Sci Rep, 2016, 6: 30742.Wiley LA, Burnight ER , DeLuca AP, et al. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness[ J]. Sci Rep, 2016, 6: 30742.
110、Uppal G, Milliken A, Lee J, et al. New algorithm for assessing patient suitability for macular translocation surgery[ J]. Clin Exp Ophthalmol, 2007, 35(5): 448-457Uppal G, Milliken A, Lee J, et al. New algorithm for assessing patient suitability for macular translocation surgery[ J]. Clin Exp Ophthalmol, 2007, 35(5): 448-457
111、Sullivan S, Stacey GN, Akazawa C, et al. Quality control guidelines for clinical-grade human induced pluripotent stem cell lines[ J]. Regen Med, 2018, 13(7): 859-866.Sullivan S, Stacey GN, Akazawa C, et al. Quality control guidelines for clinical-grade human induced pluripotent stem cell lines[ J]. Regen Med, 2018, 13(7): 859-866.
112、Huang CY, Liu CL, Ting CY, et al. Human iPSC banking: barriers and opportunities[ J]. J Biomed Sci, 2019, 26(1): 87.Huang CY, Liu CL, Ting CY, et al. Human iPSC banking: barriers and opportunities[ J]. J Biomed Sci, 2019, 26(1): 87.