Abstract: Congenital ptosis is an abnormally low position of the upper eyelid, with respect to the visual axis in the primary gaze. It can be present at birth or manifest itself during the first year of life and can be bilateral or unilateral. Additionally, it may be an isolated finding or part of a constellation of signs of a specific syndrome or systemic associations. Depending on how much it interferes with the visual axis, it may be considered as a functional or a cosmetic condition. In childhood, functional ptosis can lead to deprivation amblyopia and astigmatism and needs to be treated. However, even mild ptosis with normal vision can lead to psychosocial problems and correction is also advised, albeit on a less urgent basis. Although, patching and glasses can be prescribed to treat the amblyopia, the mainstay of management is surgical. There are several types of surgical procedure available depending on the severity and etiology of the droopy eyelid. The first part of this paper will review the different categories of congenital ptosis, including more common associated syndromes. The latter part will briefly cover the different surgical approaches, with emphasis on how to choose the correct condition. In spite of many complex factors inherent to the treatment of congenital ptosis, the overall outcomes are quite satisfactory, and most surgeons feel that ptosis management can be both challenging and rewarding at the same time.
Background: To measure the anterior and posterior segment structural features of acute primary angle-closure (APAC) eyes.
Methods: A total of 36 subjects with unilateral APAC were recruited in this study. The ocular biometric characteristics were measured by anterior segment optical coherence tomography (AS-OCT) and swept source optical coherence tomography (SS-OCT), respectively at baseline, 2 weeks, and 1 month after surgical intervention.
Results: At baseline, when compared with the fellow eyes, APAC-affected eyes showed significantly greater corneal thickness (P=0.004), shallower anterior chamber depth (ACD) (P<0.001), smaller anterior chamber area (ACA) (P=0.013), angle opening distance at 750 μm from the scleral spur (AOD750) (P=0.002), trabecular–iris space area at 750 μm from the scleral spur (TISA750) (P=0.033), angle recess area (ARA) (P=0.014), and iris area (IARE) (P=0.003), less iris curvature (ICURVE) (P=0.003), and larger lens vault (LV) (P=0.030). After intervention, the corneal thickness was significantly decreased at 1 month (P<0.001), while ACD, ACA, and AOD750 were significantly increased at 2 weeks and 1 month (all P<0.017). Changes in ACD were correlated with decreasing LV (P<0.05). The posterior segment parameters did not change over the 4-week period.
Conclusions: When compared with the fellow eyes, APAC-affected eyes had greater corneal thickness, shallower anterior chamber, narrower angle, less ICURVE, and larger LV. After intervention, the corneal thickness was decreased, while the shallower anterior chamber was relieved to some extent.
Background: To investigate the microstructural features of parapapillary gamma zone and beta zone and their relationship with three-dimensional optic disc shape in non-myopic eyes.
Methods: This cross-sectional study included 62 non-myopic eyes with parapapillary gamma or beta zone and 70 control eyes. On the spectral domain optical coherent tomography (SD-OCT) images, we measured the area of gamma zone and beta zone, the length of border tissue, and related disc parameters. The disc ovality index, disc rotation degrees around three axes, Bruch’s membrane opening (BMO) ovality ratio were calculated based on the SD-OCT images.
Results: The parapapillary gamma zone composed by externally oblique border tissue was found in inferior, nasal and temporal quadrants of the non-myopic eyes. The presence of gamma zone in non-myopic eyes was correlated with smaller disc ovality index, larger rotation degree around vertical and horizontal axes, and larger BMO ovality ratio (P<0.001). Compared with the non-temporal gamma zone group, eyes with temporal gamma zone had a longer axial length and rotated more around vertical axes (P<0.001). Multivariate analysis showed that the area of gamma zone was correlated with the disc ovality index (P<0.001). The presence and area of beta zone was correlated with age (P<0.01).
Conclusions: In non-myopic eyes, the parapapillary gamma zone composed by external oblique border tissue was significantly associated with the disc ovality and disc rotations around vertical and horizontal axes. From a biomechanical perspective, parapapillary gamma zone may contribute to the optic disc stability in association with the structure of BMO.
Abstract: Autoimmune retinopathy (AIR) refers to both paraneoplastic and non-paraneoplastic forms of a rare, acquired retinal degeneration thought to be mediated by the production of antiretinal antibodies. However, the mechanisms underlying AIR pathogenesis are incompletely understood, and it remains a diagnosis of exclusion given the lack of definitive testing as well as its protean clinical presentation. This review summarizes the current literature on the epidemiology, diagnosis, and management of AIR, with a focus on non-paraneoplastic disease and the potential role of immunomodulatory therapy. A recent expert consensus statement on diagnosis and management of non-paraneoplastic AIR served as a framework for interpreting the limited data available, a process that was complicated by the small sample sizes, heterogeneity, and retrospective nature of these studies. Additional work is needed to characterize AIR patients on the basis of cytokine and immunogenetic profiling; to establish the pathogenicity of antiretinal antibodies; and to standardize treatment regimens as well as assessment of clinical outcomes.
Abstract: Cavernous hemangioma is the most primary benign orbital tumor in adults, and majority of cases could be easily settled by surgical treatment. However, cavernous hemangioma lodged deep in the orbital apex remained a challenge because the surgery may pose a high risk of injury to the optic nerve and significant visual loss. This presentation would report a case of cavernous hemangioma located in orbital apex who presented superonasal and inferotemporal peripheral vision defect. The patient received fully transnasal endoscopic surgery, and a 2 cm × 1.5 cm tumor was successfully removed from the left orbital apex. The treatment results were satisfactory, with no after-effects and adverse reactions during follow-up. This case highlighted that transnasal endoscopic surgery is a promising technique for cavernous hemangiomas that are located deep in orbital apex. This approach provides direct pathway to tumor with limiting morbidity, maximal surgical field and ample illumination. The procedure represents a safe and less invasive management.
Abstract: Inherited retinal diseases (IRD) are a leading cause of blindness in the working age population. The advances in ocular genetics, retinal imaging and molecular biology, have conspired to create the ideal environment for establishing treatments for IRD, with the first approved gene therapy and the commencement of multiple therapy trials. The scope of this review is to familiarize clinicians and scientists with the current landscape of retinal imaging in IRD. Herein we present in a comprehensive and concise manner the imaging findings of: (I) macular dystrophies (MD) [Stargardt disease (ABCA4), X-linked retinoschisis (RS1), Best disease (BEST1), pattern dystrophy (PRPH2), Sorsby fundus dystrophy (TIMP3), and autosomal dominant drusen (EFEMP1)], (II) cone and cone-rod dystrophies (GUCA1A, PRPH2, ABCA4 and RPGR), (III) cone dysfunction syndromes [achromatopsia (CNGA3, CNGB3, PDE6C, PDE6H, GNAT2, ATF6], blue-cone monochromatism (OPN1LW/OPN1MW array), oligocone trichromacy, bradyopsia (RGS9/R9AP) and Bornholm eye disease (OPN1LW/OPN1MW), (IV) Leber congenital amaurosis (GUCY2D, CEP290, CRB1, RDH12, RPE65, TULP1, AIPL1 and NMNAT1), (V) rod-cone dystrophies [retinitis pigmentosa, enhanced S-Cone syndrome (NR2E3), Bietti crystalline corneoretinal dystrophy (CYP4V2)], (VI) rod dysfunction syndromes (congenital stationary night blindness, fundus albipunctatus (RDH5), Oguchi disease (SAG, GRK1), and (VII) chorioretinal dystrophies [choroideremia (CHM), gyrate atrophy (OAT)].
Abstract: Optical coherence tomography angiography (OCTA) is a fast, non-invasive imaging modality that provides detailed information on retinal and choroidal vascular flow and macular structure. OCTA offers an accurate three-dimensional view of the individual retinal vascular plexuses and the choriocapillaris which facilitates the detection of the microvascular abnormalities in a variety of macular diseases. The perfusion indices (vessel density and flow index) are valuable parameters evaluated by OCTA that allow a quantitative interpretation of changes in the retinal vasculature that can reflect the severity of disease. Crystalline retinopathy encompasses a group of conditions whose distinctive feature is the presence of retinal crystals often located in the posterior pole. Select crystalline retinopathies also demonstrate retinal vascular abnormalities as well. Considering that the OCTA is a novel imaging modality and crystalline retinopathies are relatively rare conditions, there are currently few reports of OCTA findings associated with crystalline retinopathy. The advent of OCTA allows visualization of vascular and structural changes in crystalline retinopathies that are unique and cannot be appreciated on other imaging modalities, including fluorescein angiography (FA). This article reviews novel OCTA findings which provide new insights in the pathogenesis of crystalline retinopathies, including Bietti crystalline retinopathy, talc retinopathy, macular telangiectasia type 2, tamoxifen retinopathy, and Sj?gren-Larsson Syndrome maculopathy.