Original Article
Review Article

Diagnosis and management of intraocular lymphoma: a narrative review

:-
 

Background and Objective: Intraocular lymphoma (IOL) is a heterogenous category of rare malignancies that are often misdiagnosed and underrecognized. The rarity of IOL impedes clinical research and contributes to difficulty in standardizing its management. In this article we review the existing scientific literature to identify the current diagnostic tools and discuss comprehensive management of various categories of IOL. Our objective is to increase disease recognition of IOL as a whole and explore updated management options for each subtype.

Methods: PubMed and Embase were searched for publications using the terms ‘intraocular lymphoma’, ‘vitreoretinal lymphoma’, ‘uveal lymphoma’, ‘iris lymphoma’, ‘choroidal lymphoma’ and ‘ciliary body lymphoma’ published from 1990 to June 2021. Inclusion criteria were English language articles. Exclusion criteria were non-English language articles, case reports and animal studies.

Key Content and Findings: IOL often presents in middle-aged and older patients with symptoms of floaters and vision changes, but a broad array of clinical signs and symptoms are possible depending upon subtype. IOL can be subdivided by location of involvement into vitreoretinal and uveal lymphoma. These subtypes express key differences in their pathophysiology, clinical presentation, histology, prognosis, and treatment. Primary vitreoretinal lymphomas (PVRL) generally originate from B-lymphocytes and are associated with central nervous system (CNS) lymphoma. Ophthalmic findings include retinal pigment epithelium changes with yellow subretinal deposits known as “leopard spotting.” Primary uveal lymphomas generally originate from low-grade B-lymphocytes invading the choroid and carry an improved prognosis compared to vitreoretinal lymphomas. Funduscopic findings of primary uveal lymphoma include yellow to pink-yellow choroidal swelling with infiltrative subconjunctival “salmon-patch” lesions. Diagnosis for IOL is often delayed due to insidious onset, low prevalence, and tendency to mimic diseases such as uveitis. Diagnosis may be challenging, often relying on biopsy with specialized laboratory testing for confirmation of IOL. Optimal treatment regimens are currently debated among experts. Management of IOL is best coordinated in association with neuro-oncology clinicians due to the tendency for intracranial involvement.

Conclusions: IOL represents a group of multiple malignancies with distinct clinicopathologic features. Future outlook for treatment and prognosis of IOL is likely to improve with less invasive molecular diagnostic techniques and increased awareness. Clinicians should be circumspect in all patients with possible IOL and promptly refer to oncologic specialists for rapid evaluation and treatment.

Case Report

Bacillary layer detachment presenting with posterior scleritis: case report

:-
 

Background: Bacillary layer detachment (BALAD) is a phenomenon characterized by fluid accumulation at the myoid region of the inner photoreceptor segments identifiable on optical coherence tomography (OCT) imaging. This finding has been recently described in patients with diverse primary diagnoses which share the common feature of serous exudation in the posterior pole. However, thus far there have been very few reports in the literature of BALAD in patients with posterior scleritis.

Case Description: A 16-year-old male presented with unilateral vision changes that acutely worsened overnight to significant unilateral vision loss. He was eventually diagnosed with idiopathic posterior scleritis with associated BALAD on OCT. Similar to other reported cases of BALAD, he experienced anatomic restoration of the outer retina followed by good visual recovery after treatment with high dose steroid, ultimately with complete recovery of both retinal anatomy and vision within 4 months.

Conclusions: This case provides further evidence that posterior scleritis can be a cause of BALAD. The rapid presentation and excellent visual and anatomical outcome of this case is entirely consistent with known descriptions of BALAD in a variety of other conditions, further supporting the categorization of BALAD as an entity which retinal specialists should be able to recognize as distinct from other forms of intraretinal fluid, retinal detachment, and retinoschisis.

Study Protocol

In vivo murine models for the study of glaucoma pathophysiology: procedures, analyses, and typical outcomes

:-
 

Background: The complexity of the glaucoma pathophysiology is directly reflected on its experimental modeling for studies about pathological mechanisms and treatment approaches. Currently, a variety of in vivo models are available for the study of glaucoma, although they do not reach an exact reproduction of all aspects characterizing the human glaucoma. Therefore, a comprehensive view of disease onset, progression and treatment efficacy can only be obtained by the integration of outcomes deriving from different experimental models.

Methods: The present article summary experimental procedures and analytical methodologies related with two experimental models of glaucoma belonging to the classes of induced intraocular pressure (IOP)-elevation and genetic models, methyl cellulose (MCE)-induced ocular hypertension and DBA/2J mouse strain. Point-by-point protocols are reported with a particular focus on the critical point for the realization of each model. Moreover, typical strength and drawbacks of each model are described in order to critically handle the outcomes deriving from each model.

Discussion: This paper provides a guideline for the realization, analysis and expected outcomes of two models allowing to study IOP-driven neurodegenerative mechanisms rather than IOP-independent neurodegeneration. The complementary information from these models could enhance the analysis of glaucomatous phenomena from different points of view potentiating the basic and translational study of glaucoma.

Review Article

Current systems and recent developments of subthreshold laser systems in glaucoma: a narrative review

:-
 

Background and Objective: Subthreshold laser technologies and their applications in ophthalmology have greatly expanded in the past few decades. Initially used for retinal diseases such as central serous chorioretinopathy and diabetic macular edema, subthreshold lasers have recently shown efficacy in the treatment of various types of glaucoma. Our primary objectives are to review the clinical applications of subthreshold laser in the context of glaucoma treatment and discuss the mechanisms of different subthreshold laser techniques, including subthreshold selective laser trabeculoplasty (SSLT), micropulse laser trabeculoplasty (MLT), pattern-scanning laser trabeculoplasty (PSLT), titanium laser trabeculoplasty (TLT), and micropulse transscleral cyclophotocoagulation (MP-TSCPC).

Methods: This was a narrative review compiled from literature of PubMed and Google Scholar. The review was performed from March 2021 to October 2021 and included publications in English. We also included information from web pages to cover details of relevant laser systems. We discuss the history of subthreshold laser, recent advancements in subthreshold techniques, and commercially available systems that provide subthreshold capabilities for glaucoma. We highlight basic science and clinical studies that deepen the understanding of treatment mechanisms and treatment effectiveness in the clinical setting respectively. We review commonly used parameters for each technique and provide comparisons to conventional treatments.

Key Content and Findings: We found five distinct types of subthreshold laser used in the management of glaucoma. Numerous subthreshold laser systems are commercially available and can provide this treatment. Therefore, understanding the differences between subthreshold techniques and laser systems will be critical in utilizing subthreshold laser in the clinical setting.

Conclusions: Traditional laser trabeculoplasty (LT) and cyclophotocoagulation (CPC) have shown effectiveness in the treatment of various types of glaucoma but are associated with visible damage to the underlying tissue and adverse effects. Subthreshold laser systems aim to provide the therapeutic effect found in traditional lasers, while minimizing unwanted treatment related effects. Further clinical studies are needed to evaluate the role of subthreshold lasers in the management of glaucoma.

Case Report

Bacillary layer detachment presenting with posterior scleritis: case report

:-
 


Background: Bacillary layer detachment (BALAD) is a phenomenon characterized by fluid accumulation at the myoid region of the inner photoreceptor segments identifiable on optical coherence tomography (OCT) imaging. This finding has been recently described in patients with diverse primary diagnoses which share the common feature of serous exudation in the posterior pole. However, thus far there have been very few reports in the literature of BALAD in patients with posterior scleritis.

Case Description: A 16-year-old male presented with unilateral vision changes that acutely worsened overnight to significant unilateral vision loss. He was eventually diagnosed with idiopathic posterior scleritis with associated BALAD on OCT. Similar to other reported cases of BALAD, he experienced anatomic restoration of the outer retina followed by good visual recovery after treatment with high dose steroid, ultimately with complete recovery of both retinal anatomy and vision within 4 months.

Conclusions: This case provides further evidence that posterior scleritis can be a cause of BALAD. The rapid presentation and excellent visual and anatomical outcome of this case is entirely consistent with known descriptions of BALAD in a variety of other conditions, further supporting the categorization of BALAD as an entity which retinal specialists should be able to recognize as distinct from other forms of intraretinal fluid, retinal detachment, and retinoschisis.


Study Protocol

In vivo murine models for the study of glaucoma pathophysiology: procedures, analyses, and typical outcomes

:-
 

Background: The complexity of the glaucoma pathophysiology is directly reflected on its experimental modeling for studies about pathological mechanisms and treatment approaches. Currently, a variety of in vivo models are available for the study of glaucoma, although they do not reach an exact reproduction of all aspects characterizing the human glaucoma. Therefore, a comprehensive view of disease onset, progression and treatment efficacy can only be obtained by the integration of outcomes deriving from different experimental models.

Methods: The present article summary experimental procedures and analytical methodologies related with two experimental models of glaucoma belonging to the classes of induced intraocular pressure (IOP)-elevation and genetic models, methyl cellulose (MCE)-induced ocular hypertension and DBA/2J mouse strain. Point-by-point protocols are reported with a particular focus on the critical point for the realization of each model. Moreover, typical strength and drawbacks of each model are described in order to critically handle the outcomes deriving from each model.

Discussion: This paper provides a guideline for the realization, analysis and expected outcomes of two models allowing to study IOP-driven neurodegenerative mechanisms rather than IOP-independent neurodegeneration. The complementary information from these models could enhance the analysis of glaucomatous phenomena from different points of view potentiating the basic and translational study of glaucoma.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
出版者信息
中山大学中山眼科中心 版权所有粤ICP备:11021180