Theme 1: Regenerative Medicine

AB004: Resuscitation of axon regenerative potential in mature retinal ganglion cells

:-
 

Abstract: Axon regeneration capacity declines in mature retinal ganglion cells (RGCs). While a number of transcription factors and signaling molecules have been implicated to the loss of regenerative potential of RGC axon, their upstream regulators are unclear. We investigated the association between developmental decline of RGC regenerative potential and age-related changes in microRNA (miRNA) expression and showed that loss of axon regenerative potential can be partially restored by upregulating miR-19a in RGCs in vitro and in vivo. Regulating miRNA expression represents a new potential therapeutic approach to resuscitate age-related loss of axon growth ability.

Editorial
Editorial
Editorial
Editorial
Editorial
Perspective
Editorial
Review Article

RAF near point rule for near point of convergence—a short review

:-
 

Abstract: RAF near point rule (RNPR) is a routinely used instrument in ophthalmology and optometry practice as well as for research purposes to measure the near point of convergence (NPC). The measurement of NPC is an important criterion for diagnosis and management of convergence insufficiency. The RNPR forms an important tool for ophthalmic clinicians however, only a very little is understood about it. This article tries to describe and review the designs, measurement techniques, merits and demerits of the RNPR and establish the need for its modification. It recommends that clinicians and researchers consider these findings while measuring NPC with the RNPR.

Perspective

Tweaking the immune system as an adjuvant for the treatment of retinal degenerations

:-
 

Abstract: Blinding diseases such as photoreceptor degenerations are debilitating conditions that severely impair daily lives of affected patients. This group of diseases are amenable to photoreceptor replacement therapies and recent transplantation studies provided proof-of-principle for functional recovery at the retinal and behavioral level, though the actual mechanism of repair still needs further investigations. The immune system responds in several ways upon photoreceptor engraftment, resulting in T-cell and macrophage infiltrations and, consequently, decrease in graft survival. Most studies on the role of the immune system suggest a detrimental effect in a therapeutic setting. Conversely, the opposite idea wherein the immune system can be activated towards a protective state was also explored in other experimental paradigms. Here, Neves and colleagues explored the potential of cross-species studies and, to a certain extent, the concept of a protective immune system in retinal degeneration and therapy. Mesencephalic astrocyte-derived neurotrophic factor (MANF) was identified in this study as a novel factor that, by modulating the immune system, can slow down photoreceptor degeneration and improve transplantation outcome.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
出版者信息
中山大学中山眼科中心 版权所有粤ICP备:11021180