Brain and Perception

AB052. A standardized quantification of the visual contrast response function

:-
 

Background: All neurons of the visual system exhibit response to differences in luminance. This neural response to visual contrast, also known as the contrast response function (CRF), follows a characteristic sigmoid shape that can be fitted with the Naka-Rushton equation. Four parameters define the CRF, and they are often used in different visual research disciplines, since they describe selective variations of neural responses. As novel technologies have grown, the capacity to record thousands of neurons simultaneously brings new challenges: processing and robustly analyzing larger amounts of data to maximize the outcomes of our experimental measurements. Nevertheless, current guidelines to fit neural activity based on the Naka-Rushton equation have been poorly discussed in depth. In this study, we explore several methods of boundary-setting and least-square curve-fitting for the CRF in order to avoid the pitfalls of blind curve-fitting. Furthermore, we intend to provide recommendations for experimenters to better prepare a solid quantification of CRF parameters that also minimize the time of the data acquisition. For this purpose, we have created a simplified theoretical model of spike-response dynamics, in which the firing rate of neurons is generated by a Poisson process. The spike trains generated by the theoretical model depending on visual contrast intensities were then fitted with the Naka-Rushton equation. This allowed us to identify combinations of parameters that were more important to adjust before performing experiments, to optimize the precision and efficiency of curve fitting (e.g., boundaries of CRF parameters, number of trials, number of contrast tested, metric of contrast used and the effect of including multi-unit spikes into a single CRF, among others). Several goodness-of-fit methods were also examined in order to achieve ideal fits. With this approach, it is possible to anticipate the minimal requirements to gather and analyze data in a more efficient way in order to build stronger functional models.

Methods: Spike-trains were randomly generated following a Poisson distribution in order to draw both an underlying theoretical curve and an empirical one. Random noise was added to the fit to simulate empirical conditions. The correlation function was recreated on the simulated data and re-fit using the Naka-Rushton equation. The two curves were compared: the idea being to determine the most advantageous boundaries and conditions for the curve-fit to be optimal. Statistical analysis was performed on the data to determine those conditions for experiments. Experiments were then conducted to acquire data from mice and cats to verify the model.

Results: Results were obtained successfully and a model was proposed to assess the goodness of the fit of the contrast response function. Various parametres and their influence of the model were tested. Other similar models were proposed and their performance was assessed and compared to the previous ones. The fit was optimized to give semi-strict guidelines for scientists to follow in order to maximize their efficiency while obtaining the contrast tuning of a neuron.

Conclusions: The aim of the study was to assess the optimal testing parametres of the neuronal response to visual gratings with various luminance, also called the CRF. As technology gets more powerful and potent, one must make choices when experimenting. With a strong model, robust boundaries, and strong experimental conditioning, the best fit to a function can lead to more efficient analysis and stronger cognitive models.

Brain and Perception

AB050. Neuronal response to visual contrast varies as function of the cortical layer

:-
 

Background: For years, studies using several animal models have highlighted the predominant role of the primary visual area in visual information processing. Its six cortical layers have morphological, hodological and physiological differences, although their roles regarding the integration of visual contrast and the messages sent by the layers to other brain regions have been poorly explored. Given that cortical layers have distinct properties, this study aims to understand these differences and how they are affected by a changing visual contrast.

Methods: A linear multi-channel electrode was placed in the primary visual cortex (V1) of the anesthetized mouse to record neuronal activity across the different cortical layers. The laminar position of the electrode was verified in real time by measuring the current source density (CSD) and the multi-unit activity (MUA), and confirmed post-mortem by histological analysis. Drifting gratings varying in contrast enabled the measurement of the firing rate of neurons throughout layers. We fitted this data to the Naka-Rushton equations, which generated the contrast response function (CRF) of neurons.

Results: The analysis revealed that the baseline activity as well as the rate of change of neural discharges (the slope of the CRF) had a positive correlation across the cortical layers. In addition, we found a trend between the cortical position and the contrast evoking the semi-saturation of the activity. A significant difference in the maximum discharge rate was also found between layers II/III and IV, as well as between layers II/III and V.

Conclusions: Since layers II/III and V process visual contrast differently, our results suggest that higher cortical visual areas, as well subcortical regions, receive different information regarding a change in visual contrast. Thus, a contrast may be processed differently throughout the different areas of the visual cortex.

Retina and Posterior Segment

AB046. The retinoblastoma model for translational research

:-
 

Background: Our national collaborative research initiative is proposing to develop a common infrastructure for Rb research. We are proposing a novel in vivo Rb model using human Rb cells line.

Methods: The rabbit model has advantages over the mouse models: (I) the larger eye size of rabbits, similar to the human infant eye, permits a more accurate injection of the drugs and evaluation of methods of targeted intraocular drug delivery; (II) the rabbit model demonstrated similar fundus appearance and pathologic features to human Rb, including vitreous seeds of viable tumor when the retinal tumor is mid-sized, which are usually found in the late stage in mouse models. The lack of ability to eliminate vitreous seeds is a major reason of current treatment failures in Group C and D tumors; therefore, the rabbit model of Rb may be used as a model to evaluate the effectiveness and various routes of drug delivery.

Results: This is an implementation of an infrastructure for evaluating therapeutic targets. In addition, this finding enables a variety of pharmacokinetic studies, pharmacodynamic and toxicology studies for new therapeutic agents.

Conclusions: This infrastructure meets the growing concern of practitioners and researchers in the field. The common facility is easily accessible to all VHRN members on request, including requests from other sectors.

Retina and Posterior Segment

AB029. The role of inducible nitric oxide synthase in deleterious effects of Kinin B1 receptor in diabetic retinopathy

:-
 

Background: Overexpression of inducible nitric oxide synthase (iNOS) has been reported in diabetic retinopathy (DR). The kinin B1 receptor (B1R) is also overexpressed in DR, and can stimulate iNOS via Gαi/ERK/MAPK pathway. We previously showed that the topical administration of a B1R antagonist, LF22-0542, significantly reduces leukocyte infiltration, increased vascular permeability and overexpression of several inflammatory mediators, including iNOS in DR. Thus, the aim of this study was to determine whether the pro-inflammatory effects of B1R are attributed to oxidative stress caused by the activation of iNOS pathway in order to identify new therapeutic targets for the treatment of DR. iNOS and B1R being absent in the normal retina, their inhibition is unlikely to result in undesirable side effects. The approach will be no invasive by eye application of drops.

Methods: Diabetes was induced in male Wistar rats (200–230 g) by a single intraperitoneal injection of streptozotocin (STZ, 65 mg/kg b.w). One week later, rats were randomly divided into four groups (N=5) and treated for one week as follows: Gr 1: control rats treated with the selective iNOS inhibitor (1,400 W, 0.06 μM twice a day by eye-drops ×7 days), Gr 2, STZ-diabetic rats treated with 1,400 W, Gr 3: control rats received a selective B1R agonist [Sar (D-Phe8)-des-Arg9-BK, 100 μg twice a week] by intravitreal injections (itrv) and treated with 1,400 W, Gr 4: STZ-diabetic rats + B1R agonist +1,400 W. At the end of treatment and two weeks post-STZ, three series of experiments were carried out to measure vascular permeability (by Evans blue dye method) and the expression of vasoactive and inflammatory mediators, including iNOS, VEGF-A, VEGF-R2, IL-1β, Cox-2, TNF-α, bradykinin 1 and 2 receptors and carboxypeptidase M/kininase 1 (by Western Blotting and qRT-PCR). The nitrosative stress (nitrosylation of proteins) was also assessed by Western Blotting. One-way Anova test with Bonferroni post hoc was used for statistical analysis.

Results: STZ-diabetic rats showed a significant increase in retinal vascular permeability (22.8 μg/g Evans blue dye per g of fresh retinas, P=0.016) compared with control rats and control treated rats (17.2 and 16.8 μg/g respectively). The injections of B1R agonist amplified the increase of vascular permeability which was normalized by the 1,400 W. The overexpression of inflammatory markers was also normalized by the 1,400 W in STZ-diabetic rats received or not the B1R agonist.

Conclusions: These results support a contribution of iNOS in the deleterious effects of B1R in this model of diabetic retinopathy. Hence, iNOS inhibition by ocular application of 1,400 W may represent a promising and non-invasive therapeutic approach in the treatment of diabetic retinopathy.

Retina and Posterior Segment

AB022. Membrane binding properties of the C-terminal segment of retinol dehydrogenase 8

:-
 

Background: Retinol dehydrogenase 8 (RDH8) is a 312-amino acid (aa) protein involved in the visual cycle. Bound to the outer segment disk membranes of photoreceptors, it reduces all-trans-retinal to all-trans-retinol1 as one of the rate-limiting steps of the visual cycle2. RDH8 is a member of the short-chain dehydrogenase/reductase family. Its C-terminal segment allows its membrane-anchoring through the postulated presence of an amphipathic α-helix and of 1 to 3 acyl groups at positions 299, 302 and 3043. The secondary structure and membrane binding characteristics of RDH8 and its C-terminal segment have not yet been described.

Methods: To evaluate the membrane binding of RDH8, the full-length protein (aa 1–312), a truncated form (aa 1–296), its C-terminal segment (aa 281–312 and 297–312) as well as different additional variants of this segment were used. The truncated protein binds membranes less efficiently than the full-length form. Thus, the C-terminal segment of RDH8 is essential for the binding and has thus been further examined. The intrinsic fluorescence of tryptophan residues at positions 289 and 310 of the wild-type C-terminal segment of RDH8 and the mutants W289F, W310F and W310R have thus been used to determine their extent of binding to lipid vesicles and to monitor their local environment. Unilamellar lipid vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or a mixture of POPC and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) were used to mimic the phospholipid content of the outer segment disk membranes of photoreceptors.

Results: An increase in fluorescence intensity and in fluorescence lifetime is observed upon increasing the concentration of lipid vesicles. These data allowed calculating values of partition coefficient of the C-terminal segment of RDH8 varying between Kp =1.1 E6 to 1.7 E6. It is noteworthy that the observation of a more intense shift to lower wavelengths upon membrane binding of the mutant W310R and W310F indicates a deeper incorporation of the remaining tryptophan residue at position 289 into the lipid bilayer. The secondary structure of the C-terminal segment of RDH8 observed by circular dichroism and infrared spectroscopy shows a superposition of α-helical, β-turn and unordered structures.

Conclusions: The peptides derived from the C-terminal segment of RDH8 show a strong binding to lipid vesicles. These strength of binding is independent of the type of lipid and the presence of a mutation.

Retina and Posterior Segment

AB021. The effect of anti-VEGF on retinal inflammation and its relationship with the Kinin system in a rat model of laser-induced choroidal neovascularization

:-
 

Background: The neovascular aged-related macular degeneration (AMD) is the leading cause of legal blindness in the elderly. It is presently treated by anti-VEGF intravitreal injection in order to stop the neovascularization. In seeking of more efficient treatments to prevent retinal damage, it has been proposed that the kinin-kallikrein system (KKS), a key player in inflammation, could be involved in AMD etiology. However, the role of kinin receptors and their interaction with VEGF in AMD is poorly understood.

Methods: In order to address this question, choroidal neovascularization (CNV) was induced in the left eye of Long-Evans rat. After laser induction, anti-VEGF or IgG control were injected into the vitreal cavity. Gene expression was measured by qRT-PCR, retinal adherent leukocytes were labelled with FITC-Concanavalin A lectin, vascular leakage by the method of Evans blue and cellular localisation by immunohistochemistry.

Results: The number of labelled adherent leucocytes was significantly increased in laser-induced CNV compared to the control eye. This was significantly reversed by one single injection of anti-VEGF. Extravasation of Evans blue dye was significantly increased in laser-induced CNV eyes compared to control eyes and partially reversed by one single injection of anti-VEGF or by R954 treatment. The mRNA expression of inflammatory mediators was significantly increased in the retina of CNV rats. Immunodetection of B1R was significantly increased in CNV eyes. B1R immunolabeling was detected on endothelial and ganglion cells.

Conclusions: This study is the first to highlight an effect of the kinin/kallikrein system in a model of CNV that could be reduced by both anti-VEGF therapy and topically administered B1R antagonist R-954.

Retina and Posterior Segment

AB018. Ocular hypertension promotes early mitochondrial fragmentation in retinal endothelial cells in a mouse model of glaucoma

:-
 

Background: Retinal endothelial cells are very active and contribute to the integrity of the neurovascular unit. Vascular dysfunction has been proposed to contribute to the pathogenesis of glaucoma. Here, we evaluated the hypothesis that ocular hypertension triggers mitochondrial alterations in endothelial cells impairing the integrity of the blood retinal barrier (BRB).

Methods: Ocular hypertension was induced by injection of magnetic microbeads into the anterior chamber of EndoMito-EGFP mice, a strain expressing green fluorescent protein selectively in the mitochondria of endothelial cells. Capillary density, mitochondrial volume, and the number of mitochondrial components were quantified in 3D-reconstructed images from whole-mounted retinas using Imaris software. Dynamin-related protein (DRP-1), mitofusin-2 (MFN-2) and optic atrophy-1 (OPA-1) expression were assessed by western blot analysis of enriched endothelial cells. Mitochondrial structure was evaluated by transmission electron microscopy (TEM) and oxygen consumption rate was monitored by Seahorse analysis. The integrity of the BRB was evaluated by quantifying Evans blue leakage.

Results: Our data demonstrate that two and three weeks after ocular hypertension induction, the total mitochondria volume in endothelial cells decreased from 0.140±0.002 μm3 from non-injured retinas to 0.108±0.005 and 0.093±0.007 μm3, respectively in glaucomatous eyes (mean ± S.E.M, ANOVA, P<0.001; N=6/group). Frequency distribution showed a substantial increase of smaller mitochondria complexes (<0.5 μm3) in endothelial cells from glaucomatous retinas. Significant upregulation of DRP-1 was found in vessels isolated from glaucomatous retinas compared to the intact retinas, while MFN-2 and OPA-1 expression was not affected. Structural alteration in endothelial cell mitochondria was confirmed by TEM, which were accompanied by a 1.93-fold reduction in the oxygen consumption rate as well as 2.6-fold increase in vasculature leakage in glaucomatous retinas (n=3–6/group). In addition, this model did not trigger changes in the density of the vascular network, suggesting that mitochondrial fragmentation was not due to endothelial cell loss.

Conclusions: This study shows that ocular hypertension leads to early alterations in the dynamic of endothelial cell mitochondria, contributing to vascular dysfunction in glaucoma.

Retina and Posterior Segment

AB003. Deregulated autophagy and energy-deficient photoreceptors drive angiogenesis in a model of age-related macular degeneration

:-
 

Abstract: Autophagy recycles intracellular substrate in part to fuel mitochondria during starvation. Deregulated autophagy caused by dyslipidemia, oxidative stress, and aging is associated with early signs of age-related macular degeneration (AMD), such as lipofuscin and perhaps drusen accumulation. Intracellular nutrient sensors for glucose and amino acids regulate autophagy. The role of lipid sensors in controlling autophagy, however, remains ill-defined. Here we will show that abundant circulating lipids trigger a satiety signal through FA receptors that restrain autophagy and oxidative mitochondrial metabolism. In the presence of excess dietary lipids, fatty acid sensors might protect tissues with high metabolic rates against lipotoxicity, favoring their storage, instead, in adipose tissues. However, sustained exposure to lipid reduces retinal metabolic efficiency. In photoreceptors with high metabolic needs, it predisposes to an energy failure and triggers compensatory albeit pathological angiogenesis, leading to blinding neovascular AMD.

Perspective

The inverted retina and the evolution of vertebrates: an evo-devo perspective

:-
 

Abstract: The inverted retina is a basic characteristic of the vertebrate eye. This implies that vertebrates must have a common ancestor with an inverted retina. Of the two groups of chordates, cephalochordates have an inverted retina and urochordates a direct retina. Surprisingly, recent genetics studies favor urochordates as the closest ancestor to vertebrates. The evolution of increasingly complex organs such as the eye implies not only tissular but also structural modifications at the organ level. How these configurational modifications give rise to a functional eye at any step is still subject to debate and speculation. Here we propose an orderly sequence of phylogenetic events that closely follows the sequence of developmental eye formation in extant vertebrates. The progressive structural complexity has been clearly recorded during vertebrate development at the period of organogenesis. Matching the chain of increasing eye complexity in Mollusca that leads to the bicameral eye of the octopus and the developmental sequence in vertebrates, we delineate the parallel evolution of the two-chambered eye of vertebrates starting with an early ectodermal eye. This sequence allows for some interesting predictions regarding the eyes of not preserved intermediary species. The clue to understanding the inverted retina of vertebrates and the similarity between the sequence followed by Mollusca and chordates is the notion that the eye in both cases is an ectodermal structure, in contrast to an exclusively (de novo) neuroectodermal origin in the eye of vertebrates. This analysis places cephalochordates as the closest branch to vertebrates contrary to urochordates, claimed as a closer branch by some researchers that base their proposals in a genetic analysis.

Review Article
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
出版者信息
中山大学中山眼科中心 版权所有粤ICP备:11021180