Review Article

Optical coherence tomography use in idiopathic intracranial hypertension

:-
 

Abstract: Idiopathic intracranial hypertension (IIH) is a condition in which elevated pressure in the cerebrospinal fluid can lead to optic nerve head (ONH) dysfunction and subsequent visual impairment. Physicians are currently limited in their ability to monitor and manage this condition, as clinical symptoms and exam findings are often delayed in response to changes in intracranial pressure. In order to find other biomarkers of disease, researchers are using imaging modalities such as optical coherence tomography (OCT) to observe microscopic changes in the eye in this condition. OCT can create 2-dimensional and 3-dimensional high definition images of the retina of the ONH and has been used to study various conditions such as glaucoma and multiple sclerosis. Numerous studies have used OCT in IIH as well, and they have shown that certain retinal layers and the ONH change in thickness and shape in both the short and long term with intracranial pressure changes. OCT is a promising modality for clinical and scientific evaluation of IIH as it is a noninvasive and practical tool to obtain in depth images. This review will discuss how OCT can be used to assess a patient with IIH, both before and after treatment, along with its limitations and future applications.

Review Article

Optical coherence tomography in ischemic optic neuropathy

:-
 

Abstract: Ischemic optic neuropathies are among the most common causes of sudden vision loss, especially in patients over age 50. The cause and prognosis of these disorders, and in particular non-arteritic anterior ischemic optic neuropathy, is poorly understood, and treatments remain poor in terms of restoring or preserving vision. Optical coherence tomography (OCT) and OCT angiography have allowed us to identify early and late structural changes in the optic nerve head and retina that may assist in predicting visual outcomes and may lead to greater understanding of pathogenesis and thus the development of effective medical interventions.

Review Article

Narrative review of risuteganib for the treatment of dry age-related macular degeneration (AMD)

:-
 

Abstract: Age-related macular degeneration (AMD) is a leading cause of blindness worldwide. AMD most commonly affects older individuals and is characterized by irreversible degeneration of the retinal pigment epithelium and neurosensory retina. Currently, there are limited treatment options for dry AMD outside of lifestyle modification and nutrient supplementation. Risuteganib [Luminate (ALG-1001), Allegro Ophthalmics, CA, USA] is an intravitreally administered inhibitor of integrin heterodimers αVβ3, αVβ5, α5β1, and αMβ2. It is currently undergoing clinical trials for the treatment of dry AMD and diabetic macular edema (DME). Preclinical studies have shown that risuteganib has an effect on the pathways for angiogenesis, inflammation, and vascular permeability. Ongoing clinical trials have had promising results showing improvements in patient best corrected visual acuity (BCVA) and reduced central macular thickness measured by optical coherence tomography (OCT). There is a pressing need for treatments for dry AMD and while risuteganib appears to have a potential benefit for patients, more data are needed before one can truly evaluate its efficacy. This narrative review provides a concise summary of the most up to date data regarding the proposed mechanism of action of risuteganib in the treatment of nonexudative AMD and DME as well as the results from recent phase 1 and phase 2 clinical trials.

Review Article

A narrative review on the role of abicipar in age-related macular degeneration

:-
 

Abstract: In developed countries, age-related macular degeneration (AMD) is the main cause of visual impairment in the elderly. Though the etiology of AMD is still unclear, it has been well understood that vascular endothelial growth factor (VEGF) is involved in the development of aberrant vasculature that represents the neovascular AMD (nAMD). Hence, VEGF inhibition is a more effective way to control nAMD. Pegaptanib, ranibizumab, and aflibercept are three drugs approved by the US Food and Drug Administration (FDA) to treat nAMD. Bevacizumab (an anti-VEGF medication comparable to ranibizumab) is already widely used off label. Existing anti-VEGF medicines are made up of antibodies or pieces of antibodies. Synthetic designed ankyrin repeat proteins (DARPins) imitate antibodies introduced recently by evolutions in bioengineering technology. These agents are designed to have high specificity and affinity to a specific target, smaller molecular size, and better tissue penetration, making them more stable and longer-acting at less concentration. Abicipar pegol (Allergan, Dublin, Ireland) is a DARPin that interlocks all VEGF-A isoforms. It has a greater affinity for VEGF and a longer intraocular half-life than ranibizumab, making it a feasible anti-VEGF agent. This review describes the properties and efficacy of abicipar, the new anti-VEGF agent, in clinical practice, which aims to improve outcomes, safety, and treatment burden of nAMD.

Review Article
Review Article

Novel mitochondrial therapies for the treatment of age-related macular degeneration

:-
 

Abstract: The purpose of this article is to review current literature and data regarding treatment options for age-related macular degeneration (AMD) related to mitochondrial therapy. This article considers the presence of flavoprotein fluorescence as a potential biomarker to test the effectiveness of the treatments. We focus primarily on two major mitochondrial targets, nuclear factor erythroid 2-related factor (NFE2L2) and PGC-1α, that function in controlling the production and effects of reactive oxidative species (ROS) directly in the mitochondria. PU-91 is an FDA approved drug that directly targets and upregulates PGC-1α in AMD cybrid cell lines. Although neither NFE2L2 nor PGC1-α have yet been tested in clinical trials, their effects have been studied in rodent models and offer promising results. MTP-131, or elamipretide?, and metformin are two drugs in phase II clinical trials that focus on the treatment of advanced, non-exudative AMD. MTP-131 functions by associating with cardiolipin (CL) whereas metformin targets adenosine-monophosphate protein kinase (AMPK) in the mitochondria. The current results of their clinical trials are elucidated in this article. The molecular targets and drugs reviewed in this article show promising results in the treatment of AMD. These targets can be further pursued to improve and refine treatment practices of this diagnosis.

Review Article

Choriocapillaris in non-neovascular age-related macular degeneration as evaluated by optical coherence tomography angiography

:-
 

Abstract: Dramatic advances in retinal imaging technology over the last two decades have significantly improved our understanding of the natural history and pathophysiology of non-neovascular age-related macular degeneration (AMD). Currently, aside from micronutrient supplements, there are no proven treatments for non-neovascular or dry AMD. Recently, a number of pharmacological agents have been evaluated or are under evaluation for treatment of patients with end-stage dry AMD manifesting as geographic atrophy (GA). It may preferable, however, to intervene earlier in the disease before the development of irreversible loss of visual function. Earlier intervention would require a more precise understanding of biomarkers which may increase the risk of progression from early and intermediate stages to the late stage of the disease. The development of optical coherence tomography angiography (OCTA) has allowed the layers of the retinal microcirculation and choriocapillaris (CC) to be visualized and quantified. Flow deficits in the CC have been observed to increase with age, particularly centrally, and these flow deficits appear to worsen with development and progression of AMD. As such, OCTA-based CC assessment appears to be a valuable new biomarker in our assessment and risk-stratification of AMD. Alterations in the CC may also provide new insights into the pathophysiology of the disease. Enhancement of choriocapillaris function may also prove to be a target of future therapeutic strategies or as a biomarker to monitor the effectiveness of therapy. As such, CC imaging may be anticipated to be an integral tool in the management of dry AMD.

Review Article

Rapid retinal functional testing

:-
 

Abstract: The most prominent causes of loss of vision in individuals over 50 years include age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy (DR). While it is important to screen for these diseases effectively, current eye care is not properly doing so for much of the population, resulting in unfortunate visual disability and high costs for patients. Innovative functional testing can be unified with other screening methods for a more robust and safer screening and prediction of disease. The goal in the creation of functional testing modalities is to develop highly sensitive screening tests that are easy to use, accessible to all users, and inexpensive. The tests herein are deployed on an iPad with easily understood and intuitive instructions for rapid, streamlined, and automatic administration. These testing modalities could become highly sensitive screenings for early detection of potentially blinding diseases. The applications from our collaborators at AMA Optics include a cone photostress recovery test for detection of AMD and diabetic macular edema (DME), brightness balance perception for optic nerve dysfunction and especially glaucoma, color vision testing which is a broad screening tool, and visual acuity test. Machine learning with the combined structural and functional data will optimize identification of disease and prediction of outcomes. Here, we review and assess various tests of visual function that are easily administered on a tablet for screening in primary care. These user-friendly and simple screening tests allow patients to be identified in the early stages of disease for referral to specialists, proper assessment and treatment.

Review Article
Review Article

Navigation technology/eye-tracking in ophthalmology: principles, applications and benefits—a narrative review

:-
 

Abstract: Navigation technology in ophthalmology, colloquially called “eye-tracking”, has been applied to various areas of eye care. This approach encompasses motion-based navigation technology in both ophthalmic imaging and treatment. For instance, modern imaging instruments use a real-time eye-tracking system, which helps to reduce motion artefacts and increase signal-to-noise ratio in imaging acquisition such as optical coherence tomography (OCT), microperimetry, and fluorescence and color imaging. Navigation in ophthalmic surgery has been firstly applied in laser vision corrective surgery and spread to involve navigated retinal photocoagulation, and positioning guidance of intraocular lenses (IOL) during cataract surgery. It has emerged as one of the most reliable representatives of technology as it continues to transform surgical interventions into safer, more standardized, and more predictable procedures with better outcomes. Eye-tracking is essential in refractive surgery with excimer laser ablation. Using this technology for cataract surgery in patients with high preoperative astigmatism has produced better therapeutic outcomes. Navigated retinal laser has proven to be safer and more accurate compared to the use of conventional slit lamp lasers. Eye-tracking has also been used in imaging diagnostics, where it is essential for proper alignment of captured zones of interest and accurate follow-up imaging. This technology is not routinely discussed in the ophthalmic literature even though it has been truly impactful in our clinical practice and represents a small revolution in ophthalmology.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
出版者信息
中山大学中山眼科中心 版权所有粤ICP备:11021180