Review Article

Novel treatments and genetics of age-related macular degeneration-a narrative review

:-
 

Abstract: Age-related macular degeneration (AMD) remains a leading cause of severe visual impairment in developing countries. Although dry-type AMD and geographic atrophy (GA) are progressive conditions with the associated decrease of visual functions, no well-established treatment regimen was proposed for the disease. Wet-type AMD is effectively treated with intravitreal anti-angiogenic agents, but frequent injections are a major issue for the affected patients. Recent advances in AMD genetics have provided new insights into the pathogenesis and novel therapeutic targets of AMD, but the benefits of using genetic testing and genotype-based risk models for AMD development and progression still lacks evidence. Novel AMD treatments aim to increase the interval among intravitreal injections through new therapeutic agents and modern delivery devices. Simultaneously, gene therapy for dry and wet AMD is widely studied. Although gene therapy possesses a major superiority over other novel treatments regarding a persistent cure of disease, many challenges exist in the way of its broad impact on the ocular health of AMD patients.

Review Article
Review Article

A revisit to staining reagents for neuronal tissues

:-
 

Abstract: In the early days of deciphering the injured neuronal tissues led to the realization that contrast is necessary to discern the parts of the recovering tissues from the damaged ones. Early attempts relied on available (and often naturally occurring) staining substances. Incidentally, the active ingredients of most of them were small molecules. With the advent of time, the knowledge of chemistry helped identify compounds and conditions for staining. The staining reagents were even found to enhance the visibility of the organelles. Silver impregnation identification of Golgi bodies was discovered in owl optic nerve. Staining reagents since the late 1800s were widely used across all disciplines and for nerve tissue and became a key contributor to advancement in nerve-related research. The use of these reagents provided insight into the organization of the neuronal tissues and helped distinguish nerve degeneration from regeneration. The neuronal staining reagents have played a fundamental role in the clinical research facilitating the identification of biological mechanisms underlying eye and neuropsychiatric diseases. We found a lack of systematic description of all staining reagents, whether they had been used historically or currently used. There is a lack of readily available information for optimal staining of different neuronal tissues for a given purpose. We present here a grouping of the reagents based on their target location: (I) the central nervous system (CNS), (II) the peripheral nervous system (PNS), or (III) both. The biochemical reactions of most of the staining reagents is based on acidic or basic pH and specific reaction partners such as organelle or biomolecules that exists within the given tissue type. We present here a summary of the chemical composition, optimal staining condition, use for given neuronal tissue and, where possible, historic usage. Several biomolecules such as lipids and metabolites lack specific antibodies. Despite being non-specific the reagents enhance contrast and provide corroboration about the microenvironment. In future, these reagents in combination with emerging techniques such as imaging mass spectrometry and kinetic histochemistry will validate or expand our understanding of localization of molecules within tissues or cells that are important for ophthalmology and vision science.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
出版者信息
中山大学中山眼科中心 版权所有粤ICP备:11021180