Retina and Posterior Segment
Retina and Posterior Segment
Retina and Posterior Segment

AB009. The age-related macular degeneration genetic-risk promotes pathogenic subretinal inflammation

:-
 

Abstract: Mononuclear phagocytes (MP) comprise a family of cells that include microglial cells (MC), monocytes, and macrophages. The subretinal space, located between the RPE and the photoreceptor outer segments, is physiologically devoid of MPs and a zone of immune privilege mediated, among others, by immunosuppressive RPE signals. Age-related macular degeneration (AMD) is a highly heritable major cause of blindness, characterized by a breakdown of the subretinal immunosuppressive environment and an accumulation of pathogenic inflammatory MPs. Studies in mice and humans suggest that the AMD-associated APOE2 isoform promotes the breakdown of subretinal immunosuppression and increased MP survival. Of all genetic factors, variants of complement factor H (CFH) are associated with greatest linkage to AMD. Using loss of function genetics and orthologous models of AMD, we provide mechanistic evidence that CFH inhibits the elimination of subretinal MPs. Importantly, the AMD-associated CFH402H isoform markedly increased this inhibitory effect on microglial cells, indicating a causal link to disease etiology. Pharmacological acceleration of resolution of subretinal inflammation might be a powerful tool for controlling inflammation and neurodegeneration in late AMD.

Retina and Posterior Segment

AB005. Perspectives on complement injury and choriocapillaris endothelial cell loss in aging and age-related macular degeneration

:-
 

Abstract: Genetic studies have revealed that variants in genes that encode regulators of the complement system are major risk factors for the development of age-related macular degeneration (AMD). The biochemical consequences of the common polymorphism in complement factor H (Tyr402His) include increased formation of the membrane attack complex (MAC), which is deposited at the level of the inner choroid and choriocapillaris. Whereas the MAC is normally protective against foreign pathogens, it can also damage resident bystander cells when it is insufficiently regulated. Indeed, human maculas with early AMD show loss of endothelial cells in the choriocapillaris, the principal site of MAC activation. Modeling of MAC injury of choroidal endothelial cells in vitro reveals that these cells are susceptible to cell lysis by the MAC, and that unlysed cells alter their gene expression profile to undergo a pro-angiogenic phenotype that includes increased expression of matrix metalloproteinase-9. Strategies for protecting choriocapillaris endothelial cells from MAC-mediated lysis and for replacing lysed endothelial cells will be discussed.

Retina and Posterior Segment

AB003. Deregulated autophagy and energy-deficient photoreceptors drive angiogenesis in a model of age-related macular degeneration

:-
 

Abstract: Autophagy recycles intracellular substrate in part to fuel mitochondria during starvation. Deregulated autophagy caused by dyslipidemia, oxidative stress, and aging is associated with early signs of age-related macular degeneration (AMD), such as lipofuscin and perhaps drusen accumulation. Intracellular nutrient sensors for glucose and amino acids regulate autophagy. The role of lipid sensors in controlling autophagy, however, remains ill-defined. Here we will show that abundant circulating lipids trigger a satiety signal through FA receptors that restrain autophagy and oxidative mitochondrial metabolism. In the presence of excess dietary lipids, fatty acid sensors might protect tissues with high metabolic rates against lipotoxicity, favoring their storage, instead, in adipose tissues. However, sustained exposure to lipid reduces retinal metabolic efficiency. In photoreceptors with high metabolic needs, it predisposes to an energy failure and triggers compensatory albeit pathological angiogenesis, leading to blinding neovascular AMD.

Retina and Posterior Segment

AB001. Innate immunity, aging and angiogenesis

:-
 

Abstract: Disorders of lipid metabolism and macrophage function have been implicated in tissue aging and in diseases such as age-related macular degeneration (AMD). Genetic studies and expression profiling have identified widespread abnormalities in cholesterol metabolism in the aging macrophage. In addition, the molecular pathways that regulate the transition from aging to disease have not been elucidated. The current status regarding the mechanisms that regulate macrophage aging and the molecular mechanisms of transition to disease in the context of AMD will be presented with a special focus on factors that influence pathologic angiogenesis and neurodegeneration.

Review Article

Age related macular degeneration: from evidence based-care to experimental models

:-
 

Abstract: To describe the current aging population in China and globally, especially as it applies to age-related macular degeneration (AMD). To review the current standards of care for treating both wet (exudative) eAMD and dry (atrophic) aAMD. And to introduce a model for experimentation that is based on the Age-Related Eye Disease Study (AREDS) using eye bank tissue. A literature search that outlines current aging populations, standards of clinical treatment as defined by large, multicenter, randomized clinical trials that present level-I data with a low risk for bias. An experimental model system of AMD is presented that enables scientific analysis of AMD pathogenesis by applying grading criteria from the AREDS to human eye bank eyes. Analysis includes proteomic, cellular, and functional genomics. The standard of care for the treatment of eAMD is currently defined by the use of several anti-vascular endothelial growth (anti-VEGF) agents alone or in combination with photodynamic therapy. Monotherapy treatment intervals may be monthly, as needed, or by using a treat-and-extend (TAE) protocol. There are no proven therapies for aAMD. AMD that is phenotypically defined at AREDS level 3, should be managed with the use of anti-oxidant vitamins, lutein/zeaxanthin and zinc (AREDS-2 formulation). By understanding the multiple etiologies in the pathogenesis of AMD (i.e., oxidative stress, inflammation, and genetics), the use of human eye bank tissues graded according to the Minnesota Grading System (MGS) will enable future insights into the pathogenesis of AMD. Initial AMD management is with lifestyle modification such as avoiding smoking, eating a healthy diet and using appropriate vitamin supplements (AREDS-2). For eAMD, anti-VEGF therapies using either pro re nata (PRN) or TAE protocols are recommended, with photodynamic therapy in appropriate cases. New cellular information will direct future, potential therapies and these will originate from experimental models, such as the proposed eye bank model using the MGS, that leverages the prospective AREDS database.

Letter to the Editor
Editorial
Review Article

Novel treatments and genetics of age-related macular degeneration-a narrative review

:-
 

Abstract: Age-related macular degeneration (AMD) remains a leading cause of severe visual impairment in developing countries. Although dry-type AMD and geographic atrophy (GA) are progressive conditions with the associated decrease of visual functions, no well-established treatment regimen was proposed for the disease. Wet-type AMD is effectively treated with intravitreal anti-angiogenic agents, but frequent injections are a major issue for the affected patients. Recent advances in AMD genetics have provided new insights into the pathogenesis and novel therapeutic targets of AMD, but the benefits of using genetic testing and genotype-based risk models for AMD development and progression still lacks evidence. Novel AMD treatments aim to increase the interval among intravitreal injections through new therapeutic agents and modern delivery devices. Simultaneously, gene therapy for dry and wet AMD is widely studied. Although gene therapy possesses a major superiority over other novel treatments regarding a persistent cure of disease, many challenges exist in the way of its broad impact on the ocular health of AMD patients.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
出版者信息
中山大学中山眼科中心 版权所有粤ICP备:11021180