Retina and Posterior Segment

AB011. Live imaging of retinal pericytes: evidence for early calcium uptake, capillary constriction and vascular dysregulation in ocular hypertension glaucoma

:-
 

Background: Pericytes are contractile cells that wrap along the walls of capillaries. In the brain, pericytes play a crucial role in the regulation of capillary diameter and vascular blood flow in response to metabolic demand. The contribution of pericytes to microvascular deficits in glaucoma is currently unknown. To address this, we used two-photon excitation microscopy for longitudinal monitoring of retinal pericytes and capillaries in a mouse glaucoma model.

Methods: Ocular hypertension was induced by injection of magnetic microbeads into the anterior chamber of albino mice expressing red fluorescent protein selectively in pericytes (NG2-DsRed). Minimally invasive, multiphoton imaging through the sclera of live NG2-DsRed mice was used to visualize pericytes and capillary diameter at one, two and three weeks after glaucoma induction. In vivo fluctuations in pericyte intracellular calcium were monitored with the calcium indicator Fluo-4. Ex vivo stereological analysis of retinal tissue prior to and after injection of microbeads was used to confirm our in vivo findings.

Results: Live two-photon imaging of NG2-DsRed retinas demonstrated that ocular hypertension induced progressive accumulation of intracellular calcium in pericytes. Calcium uptake correlated directly with the narrowing of capillaries in the superficial, inner, and outer vascular plexuses (capillary diameter: na?ve control =4.7±0.1 μm, glaucoma =4.0±0.1 μm, n=5–6 mice/group, Student’s t-test P<0.05). Frequency distribution analysis showed a substantial increase in the number of small-diameter capillaries (≤3 μm) and a decrease in larger-diameter microvessels (≥5–9 μm) at three weeks after induction of ocular hypertension (n=5–6 mice/group, Student’s t-test P<0.05).

Conclusions: Our data support two main conclusions. First, two-photon excitation microscopy is an effective strategy to monitor longitudinal changes in retinal pericytes and capillaries in live animals at glaucoma onset and progression. Second, ocular hypertension triggers rapid intracellular calcium increase in retinal pericytes leading to substantial capillary constriction. This study identifies retinal pericytes as important mediators of early microvascular dysfunction in glaucoma.

Retina and Posterior Segment
Retina and Posterior Segment

AB010. Promotion of BMP9/ALK1 quiescence signaling for the prevention of diabetic macular edema (DME)

:-
 

Background: Sight-threatening diabetic macular edema (DME) is caused by increased microvascular permeability. While few direct vascular targeting strategies are available, VEGF pathway inhibition has shown to be effective in reducing retinal vascular leakage but is associated with non-negligible side effects. Thus, more options are needed. Vascular specific Activin-like kinase receptor type I (ALK1) pathway and its circulating ligand Bone morphogenetic protein-9 (BMP9) is known for its potent quiescent and stabilizing effect on the vasculature. However, little is known about this pathway in the context of microvascular permeability associated with diabetes. We hypothesize that BMP9/ALK1 pathway is inhibited in diabetic (DB) retinas leading to vascular destabilization and leakage and that its activation could re-establish proper vascular endothelial barrier functions (EBF).

Methods: The effect of hyperglycemia (i.e., HG >10 mM of D-glucose) on Alk1 signaling was evaluated in vitro by subjecting endothelial cells (EC) to increasing concentrations of D-glucose (5, 11, 25 mM) and in vivo using DB mice (Streptozotocin-induced diabetes). The contribution of Alk1 signaling on EBF was evaluated using Evans Blue permeation in inducible endothelial specific Alk1 KO mice. To evaluate the potential protective effects of BMP9/Alk1 signaling on EBF, BMP9 overexpression was achieved using adenoviral delivery in DB mice. Statistical-One-Way ANOVA or Student’s t-test was used.

Results: Endothelial tissue from DB mice showed a significant inhibition of BMP9/ALK1-canonical Smad1,5,8 quiescence signaling (DB n=5; CTL n=4; P<0.01), which was associated with reduced expression of target genes (JAG1, Id1,3, Hey1,2 & HES). Moreover, we showed that retinal hyperpermeability associated with diabetes was exacerbated in Alk1 heterozygote mice (n=4–9/group; P<0.0001). Finally, we demonstrated that activation of Alk1 signaling in ECs prevented vascular permeability induced by HG, both in vitro (n=3; P=0.009) and in vivo (n=4–9/group; P<0.0001).

Conclusions: Consistent with our hypothesis, vascular stability and quiescence induced by BMP9-ALK1 signaling is inhibited in the DB/HG endothelium which could be an important factor in vascular leakage leading to DME. Our results show that activation of this pathway could offer a therapeutically interesting future option to slow down the onset of DME.

Retina and Posterior Segment

AB009. The age-related macular degeneration genetic-risk promotes pathogenic subretinal inflammation

:-
 

Abstract: Mononuclear phagocytes (MP) comprise a family of cells that include microglial cells (MC), monocytes, and macrophages. The subretinal space, located between the RPE and the photoreceptor outer segments, is physiologically devoid of MPs and a zone of immune privilege mediated, among others, by immunosuppressive RPE signals. Age-related macular degeneration (AMD) is a highly heritable major cause of blindness, characterized by a breakdown of the subretinal immunosuppressive environment and an accumulation of pathogenic inflammatory MPs. Studies in mice and humans suggest that the AMD-associated APOE2 isoform promotes the breakdown of subretinal immunosuppression and increased MP survival. Of all genetic factors, variants of complement factor H (CFH) are associated with greatest linkage to AMD. Using loss of function genetics and orthologous models of AMD, we provide mechanistic evidence that CFH inhibits the elimination of subretinal MPs. Importantly, the AMD-associated CFH402H isoform markedly increased this inhibitory effect on microglial cells, indicating a causal link to disease etiology. Pharmacological acceleration of resolution of subretinal inflammation might be a powerful tool for controlling inflammation and neurodegeneration in late AMD.

Retina and Posterior Segment

AB008. Cellular senescence and retinal angiogenesis

:-
 

Abstract: Pathological retinal neovascularization is the hallmark of primary blinding diseases across all age groups, yet surprisingly little is known about the causative factors. These diseases include diabetic retinopathy and retinopathy of prematurity where progressive decay of retinal vasculature yields zones of neural ischemia. These avascular zones and the hypoxic neurons and glia that reside in them are the source of pro-angiogenic factors that mediate destructive pre-retinal angiogenesis. Central neurons such as retinal ganglion cells (RGCs), which are directly apposed to degenerating vasculature in ischemic retinopathies, require stable metabolic supply for proper function. However, we unexpectedly found that RGCs are resilient to hypoxia/ischemia and a generally compromised metabolic supply and instead of degenerating, trigger protective mechanisms of cellular senescence. Paradoxically, while potentially favoring neuronal survival, the senescent state of RGCs is incompatible with vascular repair as they adopt a senescence-associated secretory phenotype (SASP) that provokes release of a secretome of inflammatory cytokines that drives paracrine senescence and further exacerbates pathological angiogenesis. The mechanisms that lead to retinal cellular senescence and dormancy as well as the therapeutic potential of targeting these pathways will be discussed.

Retina and Posterior Segment

AB006. The co-receptor CD36 as a target in regulation of subretinal inflammation

:-
 

Abstract: Subretinal inflammation plays a critical role in retinal degenerative diseases. Although activated macrophages have been shown to play a key role in the progression of retinopathies and specifically in age-related macular degeneration, little is known about the mechanisms involved in the loss of photoreceptors leading to vision impairment. In our study on retinal damages induced by photo-oxidative stress, we have observed that CD36-deficient mice featured less subretinal macrophage accumulation with attenuated photoreceptor degeneration compared to wild-type (WT) mice. Treatment with CD36-selective azapeptide ligand (labelled MPE-001) as modulator of the inflammatory environment of the retina reduced subretinal macrophage/activated microglia accumulation with preservation of photoreceptor layers and function assessed by ERG in WT, in a CD36-dependent manner. The azapeptide modulated the transcriptome of subretinal macrophage/activated microglia by reducing pro-inflammatory markers. In isolated macrophages, the CD36-selective azapeptide induced dissociation of the CD36-TLR2/6 heterodimer complex (using FRET) altering the TLR2 signaling pathway, thus decreasing NF-KB activation and inflammasome activity. The azapeptide also incurred cytoprotection against photoreceptor apoptosis elicited by activated macrophages. These findings suggest that the azapeptide as ligand of co-receptor CD36 decreases the inflammatory response by modulating CD36-TLR2/6 complex signaling pathway in macrophages, and suggests its potential application in the treatment of retinal degenerative diseases.

Retina and Posterior Segment

AB004. Regulation of retinal angiogenesis and vascular permeability by bone morphogenetic protein signaling

:-
 

Abstract: The bone morphogenetic protein (BMP) family of proteins has a multitude of roles throughout the body. It plays important roles in development and in the adult vascular endothelium, by modulating the angiogenic response. The endothelial-specific receptor BMP receptor Alk1 is of particular importance in the proper remodeling of the vasculature and its ligand BMP9 has been shown to be a potent inhibitor of neovascularization. Dysregulated BMP signaling has been linked to multiple vascular diseases and can lead to the abnormal angiogenesis. We therefore investigated the role of BMP9/Alk1 signaling in retinal angiogenesis, and its therapeutic implications for vascular pathologies of the eye.

Retina and Posterior Segment

AB003. Deregulated autophagy and energy-deficient photoreceptors drive angiogenesis in a model of age-related macular degeneration

:-
 

Abstract: Autophagy recycles intracellular substrate in part to fuel mitochondria during starvation. Deregulated autophagy caused by dyslipidemia, oxidative stress, and aging is associated with early signs of age-related macular degeneration (AMD), such as lipofuscin and perhaps drusen accumulation. Intracellular nutrient sensors for glucose and amino acids regulate autophagy. The role of lipid sensors in controlling autophagy, however, remains ill-defined. Here we will show that abundant circulating lipids trigger a satiety signal through FA receptors that restrain autophagy and oxidative mitochondrial metabolism. In the presence of excess dietary lipids, fatty acid sensors might protect tissues with high metabolic rates against lipotoxicity, favoring their storage, instead, in adipose tissues. However, sustained exposure to lipid reduces retinal metabolic efficiency. In photoreceptors with high metabolic needs, it predisposes to an energy failure and triggers compensatory albeit pathological angiogenesis, leading to blinding neovascular AMD.

Perspective

The inverted retina and the evolution of vertebrates: an evo-devo perspective

:-
 

Abstract: The inverted retina is a basic characteristic of the vertebrate eye. This implies that vertebrates must have a common ancestor with an inverted retina. Of the two groups of chordates, cephalochordates have an inverted retina and urochordates a direct retina. Surprisingly, recent genetics studies favor urochordates as the closest ancestor to vertebrates. The evolution of increasingly complex organs such as the eye implies not only tissular but also structural modifications at the organ level. How these configurational modifications give rise to a functional eye at any step is still subject to debate and speculation. Here we propose an orderly sequence of phylogenetic events that closely follows the sequence of developmental eye formation in extant vertebrates. The progressive structural complexity has been clearly recorded during vertebrate development at the period of organogenesis. Matching the chain of increasing eye complexity in Mollusca that leads to the bicameral eye of the octopus and the developmental sequence in vertebrates, we delineate the parallel evolution of the two-chambered eye of vertebrates starting with an early ectodermal eye. This sequence allows for some interesting predictions regarding the eyes of not preserved intermediary species. The clue to understanding the inverted retina of vertebrates and the similarity between the sequence followed by Mollusca and chordates is the notion that the eye in both cases is an ectodermal structure, in contrast to an exclusively (de novo) neuroectodermal origin in the eye of vertebrates. This analysis places cephalochordates as the closest branch to vertebrates contrary to urochordates, claimed as a closer branch by some researchers that base their proposals in a genetic analysis.

Editorial
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
出版者信息
中山大学中山眼科中心 版权所有粤ICP备:11021180