Review Article

Cell-based therapies for limbal stem cell deficiency: a literature review

:22-55
 
Background and Objective: Limbal stem cell deficiency (LSCD) is characterized by the insufficiency of limbal stem cells to maintain the corneal epithelium. Severe cases of LSCD may be treated with limbal transplantation from healthy autologous or allogeneic limbal tissue. Multiple cell-based therapies have been studied as alternative treatments to improve success rates and minimize immunosuppressive regimens after allogeneic transplants. In this review, we describe the success rates, and complications of different cell-based therapies for LSCD. We also discuss each therapy’s relative strengths and weaknesses, their history in animal and human studies, and their effectiveness compared to traditional transplants.
Methods: PubMed was searched for publications using the terms LSCD, cell-based therapy, cultivated limbal epithelial transplantation (CLET), cultivated oral mucosal epithelial transplantation (COMET),and mesenchymal stem cells from 1989 to August 2022. Inclusion criteria were English language articles.Exclusion criteria were non-English language articles.
Key Content and Findings: current cell-based therapies for LSCD are CLET and non-limbal epithelial cells. Non-limbal epithelial cell methods include COMET, conjunctival epithelial autografts, and mesenchymal stem/stromal cells (MSCs). Moreover, several alternative potential sources of non-limbal cells have described, including induced pluripotent stem cells (iPSCs), human embryonic stem cells (hESCs),human dental pulp stem cells, hair follicle bulge-derived epithelial stem cells, amniotic membrane epithelial cells, and human umbilical cord lining epithelial cells.
Conclusions: Cell-based therapies are a promising treatment modality for LSCD. While CLET is currently the only approved cell-based therapy and is only approved in the European Union, more novel methods have also been shown to be effective in human or animal studies thus far. Non-limbal epithelial cells such as COMET are also an alternative treatment to allogeneic transplants especially as a surface stabilizing procedure. iPSCs are currently being studied in early phase trials and have the potential to revolutionize the way LSCD is treated. Lastly, cell-based therapies for restoring the limbal niche such as mesenchymal stem cells have also shown promising results in the first human proof-of-concept study. Several potential sources of non-limbal cells are under investigation.
Editorial
Case Report

Pterygium associated with light-emitting diode use: a case report

:-
 

Background: Pterygium is a sun-related ocular surface disease secondary to ultraviolet (UV) radiation exposure. Outdoor occupational UV exposure is known to occur secondary to sun exposure. We present a unique case of pterygium associated with indoor occupational light-emitting diode (LED) exposure not previously described in the literature.

Case Description: A mobile phone repairer presented with blurred vision and a superotemporal pterygium of his dominant left eye associated with a magnifying glass LED work lamp was diagnosed. This was excised routinely with conjunctival autografting to the defect. Histopathology confirmed benign pterygium and recovery was uncomplicated with resolution of blur.

Conclusions: The development of pterygium in our patient may have arisen due to the LED lamp’s wavelengths possibly falling within the UV as well as the upper end of the visible light radiation spectrum. Given the increasing reliance on LED light sources in modern life, ocular conditions arising from exposure to these radiation sources may now need to be listed in the differential diagnoses of patients with pterygium. Appropriate UV protection counselling for these types of lights may also now need to be considered.

Review Article

Genetic epidemiology of diabetic retinopathy

:-
 

Abstract: The disease burden of diabetic retinopathy (DR) is tremendous around the world. While DR is correlated with hemoglobin A1c (HbA1c) and duration of diabetes, genetic differences likely account for variation in susceptibility to DR. DR is a polygenic disorder with demonstrated heritability. However, linkage and admixture analyses, candidate gene association studies, and genome-wide association studies (GWAS) have not identified many loci for DR that can be consistently replicated. Larger, collaborative, multi-ethnic GWAS are needed to identify common variants with small effects. Rigorous defining of controls groups as patients with a long duration of diabetes without DR, and case groups as patients with severe DR will also aid in finding genes associated with DR. Replication in independent cohorts will be key to establishing associated loci for DR. Investigations of mitochondrial DNA and epigenetics in DR are ongoing. Whole exome sequencing presents new opportunities to identify rare variants that might be implicated in DR development. Continued research in the genetic epidemiology of DR is needed, with the potential to elucidate pathogenesis and treatment of an important disease.

Editorial
Editorial
Perspective

Tweaking the immune system as an adjuvant for the treatment of retinal degenerations

:-
 

Abstract: Blinding diseases such as photoreceptor degenerations are debilitating conditions that severely impair daily lives of affected patients. This group of diseases are amenable to photoreceptor replacement therapies and recent transplantation studies provided proof-of-principle for functional recovery at the retinal and behavioral level, though the actual mechanism of repair still needs further investigations. The immune system responds in several ways upon photoreceptor engraftment, resulting in T-cell and macrophage infiltrations and, consequently, decrease in graft survival. Most studies on the role of the immune system suggest a detrimental effect in a therapeutic setting. Conversely, the opposite idea wherein the immune system can be activated towards a protective state was also explored in other experimental paradigms. Here, Neves and colleagues explored the potential of cross-species studies and, to a certain extent, the concept of a protective immune system in retinal degeneration and therapy. Mesencephalic astrocyte-derived neurotrophic factor (MANF) was identified in this study as a novel factor that, by modulating the immune system, can slow down photoreceptor degeneration and improve transplantation outcome.

Perspective

Degenerative myopia: mechanical theories revisited

:-
 

Abstract: The article discusses the early abandonment of mechanical theories about eye enlargement in degenerative myopia at the turn of the 20th century. At that time, the number of theories about myopia grew unrestricted, but with scant support from the experimental field. The mechanical theories vanished as a new wave of metabolism-based theories appeared, propelled by the huge advances in molecular biology. Modern techniques allow reconsidering those theories and to put them to test with higher confidence.

Cornea and Anterior segment

AB087. Corneal phenotype of a Slc4a11 knockout murine model for congenital hereditary endothelial dystrophy

:-
 

Background: Congenital hereditary endothelial dystrophy (CHED) is characterized by blindness at birth or in early infancy resulting from bilateral corneal opacification, and is linked to mutation in the Slc4a11 gene. A Slc4a11 knockout (KO) mouse, generated by gene deletion (Vithana et al. Nat Genet 2006), was acquired in order to study this disease. To confirm the phenotype of this Slc4a11 KO mouse model as a function of age, using the wild type (WT) mouse as a control.

Methods: Genotyping was performed by PCR (REDExtract-N-AmpTM Tissue PCR Kit, Sigma-Aldrich, Oakville, ON). Slc4a11 WT and KO mice populations aged from 5 to 50 weeks were studied (n=5 animals per age group; 5-year age intervals). Slit lamp examination, anterior segment-ocular coherence tomography (OCT930SR; Thorlabs, Inc., Newton, NJ), corneal endothelial cell staining, and scanning (SEM) and transmission (TEM) electron microscopy were used to assess the morphological and cellular differences between the two groups. The expression of basolateral membrane transporter NaBC1 within the corneal endothelium was also assessed using immunohistochemistry.

Results: Diffuse and progressive corneal opacification was observed at the slit lamp in the Slc4a11 KO mice, starting at 10 weeks. The central corneal thickness (CCT) also increased progressively as a function of time. In comparison, Slc4a11 WT corneas remained clear over the entire study period. Early TEM results showed vacuole degeneration of the corneal endothelium in the 15-week KO mouse, which was not seen in the same age WT mouse.

Conclusions: The corneal phenotype of this Slc4a11 KO mouse is representative of the clinical manifestations of CHED in human subjects, confirming the usefulness of this model for studying pathophysiology and therapeutic alternatives for Slc4a11-associated corneal dystrophies.

Retina and Posterior Segment

AB046. The retinoblastoma model for translational research

:-
 

Background: Our national collaborative research initiative is proposing to develop a common infrastructure for Rb research. We are proposing a novel in vivo Rb model using human Rb cells line.

Methods: The rabbit model has advantages over the mouse models: (I) the larger eye size of rabbits, similar to the human infant eye, permits a more accurate injection of the drugs and evaluation of methods of targeted intraocular drug delivery; (II) the rabbit model demonstrated similar fundus appearance and pathologic features to human Rb, including vitreous seeds of viable tumor when the retinal tumor is mid-sized, which are usually found in the late stage in mouse models. The lack of ability to eliminate vitreous seeds is a major reason of current treatment failures in Group C and D tumors; therefore, the rabbit model of Rb may be used as a model to evaluate the effectiveness and various routes of drug delivery.

Results: This is an implementation of an infrastructure for evaluating therapeutic targets. In addition, this finding enables a variety of pharmacokinetic studies, pharmacodynamic and toxicology studies for new therapeutic agents.

Conclusions: This infrastructure meets the growing concern of practitioners and researchers in the field. The common facility is easily accessible to all VHRN members on request, including requests from other sectors.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
出版者信息
中山大学中山眼科中心 版权所有粤ICP备:11021180