Review Article

Pediatric uveitis: EYE-Q and metrics beyond visual acuity

:-
 

Abstract: Pediatric uveitis is an inflammatory ocular disease that can lead to sight-threatening complications. Pediatric patients have distinct challenges in the diagnosis and management of uveitis, secondary to difficulties in performing ophthalmic examinations in young children, delayed diagnosis due to lack of adherence with recommended screening schedules, medication side-effects, and increased burden of disease into adulthood. Measurement of outcomes in pediatric uveitis has traditionally relied upon the ophthalmic examination and general quality of life (QOL) measures. However, the ophthalmic examination does not take into account the impact of uveitis on a child’s QOL and general QOL measures do not adequately assess the specific effects of vision. Several vision-related quality of life (VR-QOL) instruments have been used to measure outcomes in both adults and children including: the National Eye Institute Visual Function Questionnaire (NEI VFQ-25), Vision-related Quality of Life of Children and Young People (VQoL_CYP), the Children’s Visual Function Questionnaire (CVFQ), and the Effect of Youngsters’ Eyesight on Quality of Life (EYE-Q). However, the NEI VFQ-25 is not a valid or applicable measure in children, and the VQoL_CYP and CVFQ are not uveitis specific and may not characterize disease specific burdens. The EYE-Q is the only uveitis-specific pediatric questionnaire that measures visual functioning and VR-QOL in 5–18 years old children and adolescents with uveitis. It has been shown to be a valid and reliable assessment tool in several cohorts of children with uveitis. A comprehensive assessment of the impact of uveitis on a child that includes a vision-specific measure, such as the EYE-Q, allows for better understanding of the true burden of uveitis in children. For this review, we describe traditional outcome measures in uveitis studies, general QOL measures and vision-specific measures in adults and in children.

Review Article
Review Article

Application of optical coherence tomography in hereditary, toxic and metabolic optic neuropathies

:-
 

Abstract: Hereditary, metabolic and toxic optic neuropathies cause bilateral, central vision loss and therefore can result in severe impairment in visual function. Accurate, early diagnosis is critical, as nutritional and toxic optic neuropathies may be reversible if identified early, and diagnosis of hereditary optic neuropathies can prevent unnecessary invasive workup, provide prognostic information, and allow for effective genetic counseling. Optical coherence tomography (OCT) is a valuable tool that aids in the diagnosis and prognostication of optic neuropathies as it allows for quantification of changes in the retinal ganglion cells (RGCs) and retinal nerve fiber layer (RNFL) over time. We review the characteristic clinical presentations of hereditary, metabolic and toxic optic neuropathies, with an emphasis on OCT findings.

Review Article

Optical coherence tomography in compressive lesions of the anterior visual pathway

:-
 

Abstract: Optical coherence tomography (OCT) provides a non-invasive analysis of the retina in vivo. Lesions which compress the anterior visual pathway can cause anterograde and retrograde neuro-degeneration. Retrograde structural changes to the retina can be detected by OCT. Analyzing patterns of change on OCT can guide diagnostic and treatment decisions for lesions compressing the optic nerve and chiasm to minimize loss of visual function. From our review of current literature, it is clear that thinning of both the retinal nerve fiber and ganglion cell layers (GCLs) can indicate compression. These parameters correlate with visual function loss as detected by perimetry. Furthermore, these measurements have shown to be the most reliable biomarkers to date in predicting visual recovery after treatment of these compressive lesions.

Review Article

Overview of optical coherence tomography in neuro-ophthalmology

:-
 

Abstract: Optical coherence tomography (OCT) is a widely used non-invasive medical imaging technology that has revolutionized clinical care in ophthalmology. New developments, such as OCT angiography (OCTA) are expected to contribute even further to the widespread use of OCT-based imaging devices in the diagnosis and monitoring of patients with ophthalmic diseases. In recent years, many of the disadvantages such as limited field of view and imaging artefacts have been substantially reduced. Similar to the progress achieved in the assessment of retinal disorders, OCT is expected to change the approach to patients seen in the neuro-ophthalmology clinic. In this article, we review the technical features of OCT and OCT-based imaging techniques, highlighting the specific factors that should be taken into account when interpreting OCT in the field of neuro-ophthalmology.

Review Article

Electrical stimulation scheme optimization for retinal prosthesis: considerations from biological perspective

:-
 

Abstract: Effective and safe electrical stimulation of the retinal ganglion cells is at the heart of retinal prosthesis design. However, the effectiveness and safety demand of the electrical stimulation is often at odds against each other. Besides, the nerve fiber layer above retinal ganglion cells limits the spatial resolution of stimulation. Also, current retinal prosthesis still cannot selectively activate the ON or OFF visual pathways, thus cannot relay the correct luminance information to the brain. With decades of development, the stimulation protocol for retinal implants began to tackle these problems. We believe that a novel design of electrical stimulation scheme, combined with gene therapy technique, can improve the selectivity and spatial resolution of retinal implants and further lower the damage caused by electric stimulation.

Original Article
Review Article

Focal alteration of the intraretinal layers in neurodegenerative disorders

:-
 

Abstract: Focal intraretinal alterations have been studied to advance our understanding of the pathology of neurodegenerative diseases. The current literature involving focal alterations in the intraretinal layers was reviewed through PubMed using the search terms “focal alteration”, “region of interest”, “optical coherence tomography”, “glaucoma”, “multiple sclerosis”, “Alzheimer’s disease”, “Parkinson disease”, “neurodegenerative diseases” and other related items. It was found that focal alterations of intraretinal layers were different in various neurodegenerative diseases. The typical focal thinning might help differentiate various ocular and cerebral diseases, track disease progression, and evaluate the outcome of clinical trials. Advanced exploration of focal intraretinal alterations will help to further validate their clinical and research utility.

Medical Education Column
Medical Education Column
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
出版者信息
中山大学中山眼科中心 版权所有粤ICP备:11021180