Abstract: Age-related macular degeneration (AMD) is a leading cause of blindness worldwide. AMD most commonly affects older individuals and is characterized by irreversible degeneration of the retinal pigment epithelium and neurosensory retina. Currently, there are limited treatment options for dry AMD outside of lifestyle modification and nutrient supplementation. Risuteganib [Luminate (ALG-1001), Allegro Ophthalmics, CA, USA] is an intravitreally administered inhibitor of integrin heterodimers αVβ3, αVβ5, α5β1, and αMβ2. It is currently undergoing clinical trials for the treatment of dry AMD and diabetic macular edema (DME). Preclinical studies have shown that risuteganib has an effect on the pathways for angiogenesis, inflammation, and vascular permeability. Ongoing clinical trials have had promising results showing improvements in patient best corrected visual acuity (BCVA) and reduced central macular thickness measured by optical coherence tomography (OCT). There is a pressing need for treatments for dry AMD and while risuteganib appears to have a potential benefit for patients, more data are needed before one can truly evaluate its efficacy. This narrative review provides a concise summary of the most up to date data regarding the proposed mechanism of action of risuteganib in the treatment of nonexudative AMD and DME as well as the results from recent phase 1 and phase 2 clinical trials.
Abstract: Statins are used widely to treat hypercholesterolemia and atherosclerotic cardiovascular disease. They have inflammatory and immunomodulatory effects potentially useful for managing systemic autoimmune diseases such as rheumatoid arthritis, lupus erythematosus and multiple sclerosis. Statins also have anti-oxidative and large-vessel endothelial supportive properties that occur independent of their lipid-lowering effects. Additionally, statins can suppress macrophage and microglial activation responsible for initiating inflammatory cytokine release. More than forty percent of adults aged 65 years or older use statins in the United States and Australia, a prevalence that increases with age. The effects of statin usage on ophthalmic practice are probably underrecognized. Cardiovascular disease and age-related macular degeneration (AMD) share common risk factors, consistent with the “vascular model” of AMD pathogenesis that implicates impaired choroidal circulation in Bruch’s membrane lipoprotein accumulation. AMD has a complex multifactorial pathogenesis involving oxidative stress, choroidal vascular dysfunction, dysregulated complement-cascade-mediated inflammation and pro-inflammatory and pro-angiogenic growth factors. Many of these components are hypothetically amenable to the primary (cholesterol lowering) and secondary (anti-inflammatory, anti-oxidative, anti-vasculopathy) effects of statin use. Experimental studies have been promising, epidemiological trails have produced conflicting results and three prospective clinical trials have been inconclusive at demonstrating the value of statin therapy for delaying or preventing AMD. Cumulative evidence to date has failed to prove conclusively that statins are beneficial for preventing or treating AMD.
Abstract: In developed countries, age-related macular degeneration (AMD) is the main cause of visual impairment in the elderly. Though the etiology of AMD is still unclear, it has been well understood that vascular endothelial growth factor (VEGF) is involved in the development of aberrant vasculature that represents the neovascular AMD (nAMD). Hence, VEGF inhibition is a more effective way to control nAMD. Pegaptanib, ranibizumab, and aflibercept are three drugs approved by the US Food and Drug Administration (FDA) to treat nAMD. Bevacizumab (an anti-VEGF medication comparable to ranibizumab) is already widely used off label. Existing anti-VEGF medicines are made up of antibodies or pieces of antibodies. Synthetic designed ankyrin repeat proteins (DARPins) imitate antibodies introduced recently by evolutions in bioengineering technology. These agents are designed to have high specificity and affinity to a specific target, smaller molecular size, and better tissue penetration, making them more stable and longer-acting at less concentration. Abicipar pegol (Allergan, Dublin, Ireland) is a DARPin that interlocks all VEGF-A isoforms. It has a greater affinity for VEGF and a longer intraocular half-life than ranibizumab, making it a feasible anti-VEGF agent. This review describes the properties and efficacy of abicipar, the new anti-VEGF agent, in clinical practice, which aims to improve outcomes, safety, and treatment burden of nAMD.
Abstract: The purpose of this article is to review current literature and data regarding treatment options for age-related macular degeneration (AMD) related to mitochondrial therapy. This article considers the presence of flavoprotein fluorescence as a potential biomarker to test the effectiveness of the treatments. We focus primarily on two major mitochondrial targets, nuclear factor erythroid 2-related factor (NFE2L2) and PGC-1α, that function in controlling the production and effects of reactive oxidative species (ROS) directly in the mitochondria. PU-91 is an FDA approved drug that directly targets and upregulates PGC-1α in AMD cybrid cell lines. Although neither NFE2L2 nor PGC1-α have yet been tested in clinical trials, their effects have been studied in rodent models and offer promising results. MTP-131, or elamipretide?, and metformin are two drugs in phase II clinical trials that focus on the treatment of advanced, non-exudative AMD. MTP-131 functions by associating with cardiolipin (CL) whereas metformin targets adenosine-monophosphate protein kinase (AMPK) in the mitochondria. The current results of their clinical trials are elucidated in this article. The molecular targets and drugs reviewed in this article show promising results in the treatment of AMD. These targets can be further pursued to improve and refine treatment practices of this diagnosis.
Abstract: Dramatic advances in retinal imaging technology over the last two decades have significantly improved our understanding of the natural history and pathophysiology of non-neovascular age-related macular degeneration (AMD). Currently, aside from micronutrient supplements, there are no proven treatments for non-neovascular or dry AMD. Recently, a number of pharmacological agents have been evaluated or are under evaluation for treatment of patients with end-stage dry AMD manifesting as geographic atrophy (GA). It may preferable, however, to intervene earlier in the disease before the development of irreversible loss of visual function. Earlier intervention would require a more precise understanding of biomarkers which may increase the risk of progression from early and intermediate stages to the late stage of the disease. The development of optical coherence tomography angiography (OCTA) has allowed the layers of the retinal microcirculation and choriocapillaris (CC) to be visualized and quantified. Flow deficits in the CC have been observed to increase with age, particularly centrally, and these flow deficits appear to worsen with development and progression of AMD. As such, OCTA-based CC assessment appears to be a valuable new biomarker in our assessment and risk-stratification of AMD. Alterations in the CC may also provide new insights into the pathophysiology of the disease. Enhancement of choriocapillaris function may also prove to be a target of future therapeutic strategies or as a biomarker to monitor the effectiveness of therapy. As such, CC imaging may be anticipated to be an integral tool in the management of dry AMD.
Abstract: Several factors drive the need for increased efficiency in telemedicine screening programs directed toward diabetic retinopathy: continually increasing prevalence of diabetes worldwide, growing awareness among physicians and patients of the importance of early detection of retinal damage, and emerging technology in artificial intelligence that enables rapid identification of vision-threatening fundus features. In this context, optimizing workflows in teleretinopathy programs becomes a priority. Recent work has revealed opportunities for improvement in areas of logistics, in particular in finding the best way to get diabetic patients in front of screening cameras as conveniently as possible, as this improves compliance and, ultimately, achieves the widest reach for detection programs. The present review discusses particular aspects of mobile screening programs in which specialized retinal cameras are deployed in a van or similar type of vehicle so that they can reach patients anywhere in order to reduce barriers to access. The rationale for implementing such programs and practical considerations are presented, along with a view toward future expansion of screening and integration with artificial intelligence platforms. Lacking standardization of format and quality control among smartphone-linked approaches at present, translation of eye clinic-based photographic techniques to community-based screening offers a means of expanding the scope of impactful screening programs without the need for adoption of significantly new technology.
Abstract: The objective of the paper is to provide a general view for automatic cup to disc ratio (CDR) assessment in fundus images. As for the cause of blindness, glaucoma ranks as the second in ocular diseases. Vision loss caused by glaucoma cannot be reversed, but the loss may be avoided if screened in the early stage of glaucoma. Thus, early screening of glaucoma is very requisite to preserve vision and maintain quality of life. Optic nerve head (ONH) assessment is a useful and practical technique among current glaucoma screening methods. Vertical CDR as one of the clinical indicators for ONH assessment, has been well-used by clinicians and professionals for the analysis and diagnosis of glaucoma. The key for automatic calculation of vertical CDR in fundus images is the segmentation of optic cup (OC) and optic disc (OD). We take a brief description of methodologies about the OC and disc optic segmentation and comprehensively presented these methods as two aspects: hand-craft feature and deep learning feature. Sliding window regression, super-pixel level, image reconstruction, super-pixel level low-rank representation (LRR), deep learning methodologies for segmentation of OD and OC have been shown. It is hoped that this paper can provide guidance and bring inspiration to other researchers. Every mentioned method has its advantages and limitations. Appropriate method should be selected or explored according to the actual situation. For automatic glaucoma screening, CDR is just the reflection for a small part of the disc, while utilizing comprehensive factors or multimodal images is the promising future direction to furthermore enhance the performance.
Abstract: The most prominent causes of loss of vision in individuals over 50 years include age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy (DR). While it is important to screen for these diseases effectively, current eye care is not properly doing so for much of the population, resulting in unfortunate visual disability and high costs for patients. Innovative functional testing can be unified with other screening methods for a more robust and safer screening and prediction of disease. The goal in the creation of functional testing modalities is to develop highly sensitive screening tests that are easy to use, accessible to all users, and inexpensive. The tests herein are deployed on an iPad with easily understood and intuitive instructions for rapid, streamlined, and automatic administration. These testing modalities could become highly sensitive screenings for early detection of potentially blinding diseases. The applications from our collaborators at AMA Optics include a cone photostress recovery test for detection of AMD and diabetic macular edema (DME), brightness balance perception for optic nerve dysfunction and especially glaucoma, color vision testing which is a broad screening tool, and visual acuity test. Machine learning with the combined structural and functional data will optimize identification of disease and prediction of outcomes. Here, we review and assess various tests of visual function that are easily administered on a tablet for screening in primary care. These user-friendly and simple screening tests allow patients to be identified in the early stages of disease for referral to specialists, proper assessment and treatment.
Abstract: Pediatric glaucoma is a potentially sight-threatening disease and is considered the second leading cause of treatable childhood blindness. Pediatric glaucoma is a clinical entity including a wide range of conditions: primary congenital glaucoma, glaucoma secondary to ocular (e.g., aniridia, Peter’s anomaly), or systemic disease (e.g., Sturge Weber) and glaucoma secondary to acquired condition (pseudophakic, traumatic, uveitic glaucoma). The treatment algorithm of childhood glaucoma is a step-by-step approach, often starting with surgery, as in primary congenital glaucoma cases. Medical therapy is also crucial in the management of pediatric glaucoma. Here we reported the results of the randomized, controlled, clinical trials carried out in children treated with topical anti-glaucoma drugs. It is worth knowing that prostaglandin analogues showed an excellent systemic safety profile, while serious systemic events have been reported in children taking topical beta-blockers. Angle surgery is the first surgical option in patients diagnosed with primary congenital glaucoma, with ab interno and ab externo approaches showing similar outcomes. Trabeculectomy in children can be troublesome, as mitomycin C (MMC) can lead to bleb complications and a higher endophthalmitis rate than in adults. Glaucoma drainage devices (GDD) are no longer a last resort and can be considered a suitable option for the management of uncontrolled pediatric glaucoma after angle surgery failure.