Perspective

Clear lens extraction as the first line treatment of primary angle closure/primary angle closure glaucoma

:-
 

Abstract: Angle closure glaucoma (ACG) is one of the major causes of blindness. Angle closure occurs from the obstruction of the trabecular meshwork by the peripheral iris, which results in increased intraocular pressure (IOP) through impaired aqueous flow. Considering pupillary block by crystalline lens is the most frequent mechanism, lens extraction is regarded as an effective therapy. Recently, to validate the effect of lens extraction, the EAGLE study was reported. In this study, subjects were 50 years or older, did not have cataracts, and had newly diagnosed primary angle closure (PAC) with intraocular pressure 30 mmHg or greater or primary angle-closure glaucoma (PACG), and were divided into clear-lens extraction group and standard care group (laser peripheral iridotomy and topical glaucoma medication). This study suggested that clear-lens extraction showed greater efficacy and was more cost-effective than laser peripheral iridotomy. Initial clear lens extraction showed better clinical course and patient-reported outcomes. This study provided evidence to support clear lens extraction as the first line treatment for PAC with high IOP or PACG patients.

Editorial
Review Article

Femtosecond laser-assisted cataract surgery (FLACS) in resident training

:-
 

Abstract: This article reviews the history of the femtosecond laser in ophthalmology and its subsequent introduction into the field of cataract surgery. It discusses the innovations that this technology has brought to the field. The article also describes the current system of teaching cataract surgery to ophthalmology residents in the United States and then examines how femtosecond laser-assisted cataract surgery (FLACS) can be a beneficial part of residency education.

Review Article

Update on indications for diabetic vitrectomy and management of complications

:-
 

Abstract: Despite appropriate management of the systemic disease, patients with diabetes may develop severe forms of diabetic retinopathy that require surgery. Non-clearing vitreous haemorrhage (VH), traction retinal detachment involving the macula, combined traction and rhegmatogenous retinal detachment, progressive fibrovascular proliferation (PFP) and rubeosis with acute VH represent the main indications for surgery. Vitrectomy techniques and surgical tools have developed dramatically in the last decade in order to help the surgeon succeed in these challenging cases.

Editorial
Original Article

Posterior corneal astigmatism modifications after cataract surgery and its role on total corneal astigmatism

:-
 

Background: In recent years posterior corneal astigmatism and its effect on total corneal astigmatism has been studied, with research showing that this can impact total astigmatism. This study aims to ascertain if there is significant change in the posterior corneal astigmatism after cataract surgery and its impact on the total astigmatism.

Methods: Analysis of 76 eyes that underwent cataract surgery with monofocal intraocular lens implantation. Corneal topography was performed with Pentacam (OCULUS?) pre- and post-operatively. Total corneal astigmatism was calculated with the algorithm of vergence tracing. We compared preoperative and postoperative changes in the magnitude and axis differences of anterior corneal curvature astigmatism, posterior corneal curvature astigmatism and the calculated total corneal astigmatism. We calculated the correlation between the total preoperative astigmatism and the difference between total corneal astigmatism and anterior corneal astigmatism.

Results: The mean preoperative and postoperative posterior astigmatism was 0.31±0.02 D, showing no significant differences before and after surgery (P=0.989). Statistically significant differences between the calculated total corneal astigmatism and anterior corneal astigmatism were registered preoperatively and postoperatively in the with-the-rule anterior (WTR) corneal astigmatism (P=0.004, P<0.0001); against-the-rule (ATR) anterior corneal astigmatism (P<0.0001, P<0.0001) and in the oblique (P=0.026, P=0.019) subgroups. The posterior corneal astigmatism and the total corneal astigmatism correlated positively with the differences between the total corneal and anterior corneal astigmatism (R=0.378, P=0.001).

Conclusions: There were statistically significant differences between the magnitude of the total astigmatism and anterior corneal astigmatism, underlining the impact of posterior corneal astigmatism. A positive correlation between the preoperative posterior astigmatism and the difference between the total corneal and the anterior corneal astigmatism suggests a specially relevant role of posterior corneal astigmatism when evaluating patients with higher degrees of astigmatism.

Original Article

Using a rigid lens as endocapsular supporting device in cataract surgery for moderate subluxated cataracts

:-
 

Background: To present a surgical technique using a rigid intraocular lens as endocapsular supporting device in manual small incision cataract surgery (MSICS) for treating mild-moderate subluxated cataracts.

Methods: In our technique, a single-piece rigid polymethyl methacrylate (PMMA) lens was implanted in the bag following the nucleus removal, with its axis vertical to the zonular dialysis. This endocapsular-implanted IOL stretched the bag and provided sufficient stability and lens centration. This technique was performed in 19 eyes with subluxated cataracts, with zonulysis of ≤120 degree and nuclear sclerosis of grade ≤3. Mean follow-up time was 9.8 months.

Results: All eyes had endocapsular IOL implantation during surgery. Intraoperative extension of the dialysis did not occur in any eye. The IOL was placed in the bag in all but 1 case, in which dislocation of the IOL haptic into the vitreous occurred. Though the IOL was slightly decentered in 3 cases, it kept stable. All patients were asymptomatic.

Conclusions: This approach provides a simplified and practical strategy for surgically managing subluxation with mild-moderate zonular loss.

Original Article

Objective electrophysiological contrast sensitivity with monofocal and multifocal intraocular lenses: a prospective clinical study

:-
 

Background: To compare objective electrophysiological contrast sensitivity function (CSF) in patients implanted with either multifocal intraocular lenses (MIOLs) or monofocal intraocular lenses (IOLs) by pattern reversal visual evoked potentials (prVEP) measurements.

Methods: Fourty-five cataract patients were randomly allocated to receive bilaterally: apodized diffractive-refractive Alcon Acrysof MIOL (A), full diffractive AMO Tecnis MIOL (B) or monofocal Alcon Acrysof IOL (C). Primary outcomes: 1-year differences in objective binocular CSF measured by prVEP with sinusoid grating stimuli of 6 decreasing contrast levels at 6 spatial frequencies. Secondary outcomes: psychophysical CSF measured with VCTS-6500, photopic uncorrected distance (UDVA), and mesopic and photopic uncorrected near and intermediate visual acuities (UNVA and UIVA respectively).

Results: Electrophysiological CSF curve had an inverted U-shaped morphology in all groups, with a biphasic pattern in Group B. Group A showed a lower CSF than group B at 4 and 8 cpd, and a lower value than group C at 8 cpd. Psychophysical CSF in group A exhibited a lower value at 12 cpd than group B. Mean photopic and mesopic UNVA and UIVA were worse in monofocal group compared to the multifocal groups. Mesopic UNVA and UIVA were better in group B.

Conclusions: Electrophysiological CSF behaves differently depending on the types of multifocal or monofocal IOLs. This may be related to the visual acuity under certain conditions or to IOL characteristics. This objective method might be a potential new tool to investigate on MIOL differences and on subjective device-related quality of vision.

Review Article

Virtual reality in residents training

:-
 

Abstract: Training in residency programs is highly competitive, it requires the formation of competent physicians that achieve the performance standards that were declared for their technical skills, attitudes and interpersonal abilities. The use of simulation and technology on the medical education has increased considerably. Particularly in ophthalmology the simulators used are: live models from animal or cadavers, mannequins, wet laboratories, simulated patients, part-task moles, laser or surgical models, and more recently, virtual reality (VR). VR places a person in a simulated environment that has a specific sense of self-location, where the participant interacts with the objects within the setting. Teaching with VR refers to the use of the available resources in technology and visualization of structures to improve the educational experience of medical students, residents and physicians in professional continuous development programs. Several authors highlight the benefits of assessing trainees with the tools, they argue that the key contribution of this model is in the formative assessment. Rather than evaluating and putting a score on student’s grades, VR provides a powerful experience for the acquisition of skills. A conclusion is the need to develop studies to document the effects that it has on knowledge, skills and behaviors, and to patient related outcomes.

Review Article

Clinical evaluation exercises and direct observation of surgical skills in ophthalmology

:-
 

Abstract: Ophthalmology residency training programs need authentic methods of assessment to show that trainees have learned and can do what is expected upon graduation. Written and oral examinations are necessary to assess knowledge but other methods are needed to assess skill. Workplace-based assessments (WPBAs) should be utilized to observe resident skill in the clinic and during surgery. Several such assessment tools have been published and validated. These tools have the additional benefit of facilitating specific formative feedback and thus can be used for both teaching and assessing.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
出版者信息
中山大学中山眼科中心 版权所有粤ICP备:11021180