Review Article

Surgical considerations in diabetic vitrectomy

:-
 

Abstract: High speed and small gauge vitrectomy systems have made surgical intervention in complications of diabetic retinopathy (DR) safer. The availability of anti-vascular endothelial growth factor (anti-VEGF) compounds for use in DR has significantly improved intraoperative and postoperative outcomes. This review discusses the indications for surgical intervention in DR. The role of anti-VEGF compounds is discussed as surgical adjuvants with an emphasis on timing of treatment before surgery.

Review Article

Diabetic retinopathy: an inflammatory disease

:-
 

Abstract: Diabetic retinopathy (DR) is a complex multifactorial disease and one of the leading causes of visual impairment worldwide. DR pathogenesis is still not completely understood and, even if studies performed in the past focused on microvascular dysfunction as the main event, growing body of scientific evidence has demonstrated an important role of inflammation and neurodegeneration in the onset and progression of DR. This review summarizes current literature on the role of inflammation in the pathogenesis and progression of DR. In particular, it focuses on clinical inflammatory biomarkers detectable with non-invasive retinal imaging, suggestive of a local inflammatory condition. Current available treatments are applicable only at advanced stages of disease, therefore, there is the need to detect biomarkers of subclinical or early DR that can help in DR management before irreversible damage occurs. A better understanding of inflammatory pathways involved in DR may permit to implement more specific and personalized therapeutic strategies and clinical biomarkers may be a helpful tool in the everyday clinical practice to direct the patient to the most appropriate treatment option.

Editorial
Review Article

Ischemic optic neuropathies—update

:-
 

Abstract: This submission will briefly review the anatomy and physiology of the optic nerve, and highlight various ischemic optic neuropathies including anterior ischemic optic neuropathies (non-arteritis and arteritic), diabetic papillopathy, posterior ischemic optic neuropathies, and ischemic optic neuropathies in the setting of hemodynamic compromise.

Review Article

Myasthenia gravis

:-
 

Abstract: Myasthenia gravis (MG) is an autoimmune antibody-mediated disorder which causes fluctuating weakness in ocular, bulbar and limb skeletal muscles. There are two major clinical types of MG. Ocular MG (OMG) affects extra ocular muscles associated with eye movement and eyelid function and generalized MG results in muscle weakness throughout the body. Patients with OMG have painless fluctuating extra ocular muscles weakness, diplopia and ptosis accompanied by normal visual acuity and pupillary function. Frequently, patients with OMG develop generalized MG over 24 months. Pure OMG is more often earlier in onset (<45 years) than generalized MG. It can also occur as part of an immune-genetic disorder or paraneoplastic syndrome related to thymus tumors. Diagnosis is based on clinical manifestations, laboratory findings, electrophysiological evaluation and pharmacologic tests. Therapeutic strategies for MG consist of symptom relieving medications (e.g., acetylcholine esterase inhibitors), immunosuppressive agents, and surgical intervention (e.g., thymectomy).

Review Article
Retina and Posterior Segment

AB021. The effect of anti-VEGF on retinal inflammation and its relationship with the Kinin system in a rat model of laser-induced choroidal neovascularization

:-
 

Background: The neovascular aged-related macular degeneration (AMD) is the leading cause of legal blindness in the elderly. It is presently treated by anti-VEGF intravitreal injection in order to stop the neovascularization. In seeking of more efficient treatments to prevent retinal damage, it has been proposed that the kinin-kallikrein system (KKS), a key player in inflammation, could be involved in AMD etiology. However, the role of kinin receptors and their interaction with VEGF in AMD is poorly understood.

Methods: In order to address this question, choroidal neovascularization (CNV) was induced in the left eye of Long-Evans rat. After laser induction, anti-VEGF or IgG control were injected into the vitreal cavity. Gene expression was measured by qRT-PCR, retinal adherent leukocytes were labelled with FITC-Concanavalin A lectin, vascular leakage by the method of Evans blue and cellular localisation by immunohistochemistry.

Results: The number of labelled adherent leucocytes was significantly increased in laser-induced CNV compared to the control eye. This was significantly reversed by one single injection of anti-VEGF. Extravasation of Evans blue dye was significantly increased in laser-induced CNV eyes compared to control eyes and partially reversed by one single injection of anti-VEGF or by R954 treatment. The mRNA expression of inflammatory mediators was significantly increased in the retina of CNV rats. Immunodetection of B1R was significantly increased in CNV eyes. B1R immunolabeling was detected on endothelial and ganglion cells.

Conclusions: This study is the first to highlight an effect of the kinin/kallikrein system in a model of CNV that could be reduced by both anti-VEGF therapy and topically administered B1R antagonist R-954.

Retina and Posterior Segment
Retina and Posterior Segment

AB009. The age-related macular degeneration genetic-risk promotes pathogenic subretinal inflammation

:-
 

Abstract: Mononuclear phagocytes (MP) comprise a family of cells that include microglial cells (MC), monocytes, and macrophages. The subretinal space, located between the RPE and the photoreceptor outer segments, is physiologically devoid of MPs and a zone of immune privilege mediated, among others, by immunosuppressive RPE signals. Age-related macular degeneration (AMD) is a highly heritable major cause of blindness, characterized by a breakdown of the subretinal immunosuppressive environment and an accumulation of pathogenic inflammatory MPs. Studies in mice and humans suggest that the AMD-associated APOE2 isoform promotes the breakdown of subretinal immunosuppression and increased MP survival. Of all genetic factors, variants of complement factor H (CFH) are associated with greatest linkage to AMD. Using loss of function genetics and orthologous models of AMD, we provide mechanistic evidence that CFH inhibits the elimination of subretinal MPs. Importantly, the AMD-associated CFH402H isoform markedly increased this inhibitory effect on microglial cells, indicating a causal link to disease etiology. Pharmacological acceleration of resolution of subretinal inflammation might be a powerful tool for controlling inflammation and neurodegeneration in late AMD.

Retina and Posterior Segment

AB006. The co-receptor CD36 as a target in regulation of subretinal inflammation

:-
 

Abstract: Subretinal inflammation plays a critical role in retinal degenerative diseases. Although activated macrophages have been shown to play a key role in the progression of retinopathies and specifically in age-related macular degeneration, little is known about the mechanisms involved in the loss of photoreceptors leading to vision impairment. In our study on retinal damages induced by photo-oxidative stress, we have observed that CD36-deficient mice featured less subretinal macrophage accumulation with attenuated photoreceptor degeneration compared to wild-type (WT) mice. Treatment with CD36-selective azapeptide ligand (labelled MPE-001) as modulator of the inflammatory environment of the retina reduced subretinal macrophage/activated microglia accumulation with preservation of photoreceptor layers and function assessed by ERG in WT, in a CD36-dependent manner. The azapeptide modulated the transcriptome of subretinal macrophage/activated microglia by reducing pro-inflammatory markers. In isolated macrophages, the CD36-selective azapeptide induced dissociation of the CD36-TLR2/6 heterodimer complex (using FRET) altering the TLR2 signaling pathway, thus decreasing NF-KB activation and inflammasome activity. The azapeptide also incurred cytoprotection against photoreceptor apoptosis elicited by activated macrophages. These findings suggest that the azapeptide as ligand of co-receptor CD36 decreases the inflammatory response by modulating CD36-TLR2/6 complex signaling pathway in macrophages, and suggests its potential application in the treatment of retinal degenerative diseases.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
出版者信息
中山大学中山眼科中心 版权所有粤ICP备:11021180