论著

Effect evaluation of general education curriculum of medical artificial intelligence

:165-170
 
Objective: To analyze the effectiveness of medical education curriculum named “Development and Application of Ophthalmic Artificial Intelligence”, and provide reference for the development of other related curriculums. Methods: Longitudinal observational study method was adopted. During the fall semester of 2020, we conducted an education curriculum named “Development and Application of Ophthalmic Artificial Intelligence” and analyzed the results of mid-term and final examinations, and curriculum evaluation of students. Results: There were 118 undergraduate students taking the course and most of them were junior students majoring in clinical medicine. The score of the mid-term examination was in the range of 77.2±10.07, and 56 students (47.46%) got more than 80 points. The score of the final examination was in the range of 82.24±6.77, and 91 students (77.12%) got more than 80 points. The score of course evaluation of students was in the range of 98.76±3.55, and more than 90% of the students thought that teachers have made full preparations before class, together with clear teaching logic and accurate expressions in class. Conclusion: The smooth progress of our course proved the feasibility of medical artificial intelligence teaching. The teaching setting interspersed with theory and practice could help students to master knowledge and technology better, so as to achieve the teaching objectives.
论著

Consistency evaluation of eyeball biological measurements using StarEyes 900 and IOLMaster 500

:125-130
 
Objective: To evaluate the difference, correlation and agreement of eye parameters measured by StarEyes 900 visual function analyzer (Wan Ling Bang Qiao, China) and IOLMaster 500 (Carl Zeiss, Germany) swept-source optical coherence tomography biometer. Methods: A prospective study was designed involving 62 healthy subjects (124 eyes) undergoing ophthalmic examinations in Zhongshan Ophthalmic Center from June 2021 to July 2021. Data from their both eyes were selected for analysis in all patients. Axial length (AL), keratometry for the steepest meridian (Ks), keratometry for the flattest meridian (Kf), mean keratometry (Km) and corneal diameter (WTW) were measured by the StarEyes 900 visual function analyzer and IOLMaster 500 swept-source optical coherence tomography biometer. A paired t-test was used to analyze the differences in measurement results. The Pearson correlation coefficient was used to analyze the correlation. Bland-Airman method was used to assess the agreement of the instruments. Results: The AL, Kf, Ks, Km and WTW obtained by StarEyes 900 and IOLMaster 500 were (24.18±1.08) mm and (24.16±1.08) mm, (42.84±1.65) D and (43.04±1.57) D, (44.34±1.90) D and (44.17±1.80) D, (43.59±1.73) D and (43.61±1.64) D, and (11.64±0.29) mm and (11.64±0.30) mm, respectively. The Km and WTW of the two devices showed no significant difference (P>0.05), while the AL, Ks and Kf showed significant differences (all P<0.01). The AL and Ks obtained by StarEyes 900 were higher than by IOLMaster 500, while the Kf, Km and WTW were lower. The measurements of five aforementioned biometric parameters by both devices showed good correlation by Pearson correlation coefficient and good agreement by Bland-Airman. Conclusion: The Km and WTW measured by the two devices showed no significant difference, and provided references to one another. The difference in AL, Kf and Ks between the two devices showed significant differences. All of the measurements showed good correlation by Pearson correlation coefficient and good agreement by Bland-Airman.
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
出版者信息
中山大学中山眼科中心 版权所有粤ICP备:11021180