您的位置: 首页 > 2018年3月 第3卷 第3期 > 文字全文

AB007. Tissue engineering of a choroidal substitute with pseudo-vascularization

AB007. Tissue engineering of a choroidal substitute with pseudo-vascularization

来源期刊: Annals of Eye Science | 2018年3月 第3卷 第3期 - 发布时间:阅读量:821
作者:
2,
3,
关键词:
Tissue engineering choroid self-assembly
Tissue engineering choroid self-assembly
DOI:

Background: The goal of this study was to engineer an epithelialized and endothelialized pigmented choroidal substitute using the self-assembly approach of tissue engineering.

Methods: Cells from human choroids were isolated and cultured. Culture purity was assessed using immunostaining (CD31, HMB45, vimentin, keratins 8/18). To engineer the choroid, fibroblasts were cultured in the presence of serum and ascorbic acid to promote extracellular matrix (ECM) assembly. Endothelial cells, melanocytes or RPE cells were separately seeded on the stromal substitutes. Choroidal substitutes were further characterized by histology, mass spectrometry, immunostaining, and compared to native human choroids.

Results: The technique used to isolate choroidal cells yielded pure cultures of fibroblasts, melanocytes and vascular endothelial cells. The stromal substitutes engineered using the self-assembly approach were composed of collagen (types I, VI, XII and XIV), proteoglycans (decorin, lumican) and other ECM proteins. Protein expression was confirmed using immunostaining. Endothelial cells spontaneously assembled into capillary-like structures and vascular networks when cocultured with fibroblast-containing ECM sheets.

Conclusions: This study shows that the self-assembly approach of tissue engineering can be used to reconstruct a choroid using native cells. This model represents a unique tool to better understand the crosstalk between the different choroidal cell types and cell-ECM interactions.

Background: The goal of this study was to engineer an epithelialized and endothelialized pigmented choroidal substitute using the self-assembly approach of tissue engineering.

Methods: Cells from human choroids were isolated and cultured. Culture purity was assessed using immunostaining (CD31, HMB45, vimentin, keratins 8/18). To engineer the choroid, fibroblasts were cultured in the presence of serum and ascorbic acid to promote extracellular matrix (ECM) assembly. Endothelial cells, melanocytes or RPE cells were separately seeded on the stromal substitutes. Choroidal substitutes were further characterized by histology, mass spectrometry, immunostaining, and compared to native human choroids.

Results: The technique used to isolate choroidal cells yielded pure cultures of fibroblasts, melanocytes and vascular endothelial cells. The stromal substitutes engineered using the self-assembly approach were composed of collagen (types I, VI, XII and XIV), proteoglycans (decorin, lumican) and other ECM proteins. Protein expression was confirmed using immunostaining. Endothelial cells spontaneously assembled into capillary-like structures and vascular networks when cocultured with fibroblast-containing ECM sheets.

Conclusions: This study shows that the self-assembly approach of tissue engineering can be used to reconstruct a choroid using native cells. This model represents a unique tool to better understand the crosstalk between the different choroidal cell types and cell-ECM interactions.

doi: 10.21037/aes.2018.AB007
Cite this abstract as: Proulx S. Tissue engineering of a choroidal substitute with pseudo-vascularization. Ann Eye Sci 2018;3:AB007.
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
出版者信息
中山大学中山眼科中心 版权所有粤ICP备:11021180
目录