1、Szabelska A, Tatara MR, Krupski W. Morphological,
densitometric and mechanical properties of mandible
in 5-month-old Polish Merino sheep. BMC Vet Res
2017;13:12.Szabelska A, Tatara MR, Krupski W. Morphological,
densitometric and mechanical properties of mandible
in 5-month-old Polish Merino sheep. BMC Vet Res
2017;13:12.
2、Garabedian C, Champion C, Servan-Schreiber E, et al. A
new analysis of heart rate variability in the assessment of
fetal parasympathetic activity: An experimental study in a
fetal sheep model. PLoS One 2017;12:e0180653.Garabedian C, Champion C, Servan-Schreiber E, et al. A
new analysis of heart rate variability in the assessment of
fetal parasympathetic activity: An experimental study in a
fetal sheep model. PLoS One 2017;12:e0180653.
3、Chatterjee M, Faot F, Correa C, et al. A robust
methodology for the quantitative assessment of the rat
jawbone microstructure. Int J Oral Sci 2017;9:87-94.Chatterjee M, Faot F, Correa C, et al. A robust
methodology for the quantitative assessment of the rat
jawbone microstructure. Int J Oral Sci 2017;9:87-94.
4、Di Nardo F, Anfossi L, Ozella L, et al. Validation of
a qualitative immunochromatographic test for the
noninvasive assessment of stress in dogs. J Chromatogr B
Analyt Technol Biomed Life Sci 2016;1028:192-8.Di Nardo F, Anfossi L, Ozella L, et al. Validation of
a qualitative immunochromatographic test for the
noninvasive assessment of stress in dogs. J Chromatogr B
Analyt Technol Biomed Life Sci 2016;1028:192-8.
5、Cowin SC, Hart RT, Balser JR, et al. Functional adaptation
in long bones: establishing in vivo values for surface
remodeling rate coefficients. J Biomech 1985;18:665-84.Cowin SC, Hart RT, Balser JR, et al. Functional adaptation
in long bones: establishing in vivo values for surface
remodeling rate coefficients. J Biomech 1985;18:665-84.
6、Alexander A, Sherman J, Horn D. Fundus fluorescein
angiography: a summary of theoretical concepts and
clinical applications. J Am Optom Assoc 1979;50:53-63.Alexander A, Sherman J, Horn D. Fundus fluorescein
angiography: a summary of theoretical concepts and
clinical applications. J Am Optom Assoc 1979;50:53-63.
7、Huang D, Swanson EA, Lin CP, et al. Optical coherence
tomography. Science 1991;254:1178-81.Huang D, Swanson EA, Lin CP, et al. Optical coherence
tomography. Science 1991;254:1178-81.
8、Anger EM, Unterhuber A, Hermann B, et al. Ultrahigh
resolution optical coherence tomography of the monkey
fovea. Identification of retinal sublayers by correlation with
semithin histology sections. Exp Eye Res 2004;78:1117-25.Anger EM, Unterhuber A, Hermann B, et al. Ultrahigh
resolution optical coherence tomography of the monkey
fovea. Identification of retinal sublayers by correlation with
semithin histology sections. Exp Eye Res 2004;78:1117-25.
9、Rosolen SG, Rivière ML, Lavillegrand S, et al. Use of
a combined slit-lamp SD-OCT to obtain anterior and
posterior segment images in selected animal species. Vet
Ophthalmol 2012;15 Suppl 2:105-15.Rosolen SG, Rivière ML, Lavillegrand S, et al. Use of
a combined slit-lamp SD-OCT to obtain anterior and
posterior segment images in selected animal species. Vet
Ophthalmol 2012;15 Suppl 2:105-15.
10、Strouthidis NG, Grimm J, Williams GA, et al. A
comparison of optic nerve head morphology viewed by
spectral domain optical coherence tomography and by serial
histology. Invest Ophthalmol Vis Sci 2010;51:1464-74.Strouthidis NG, Grimm J, Williams GA, et al. A
comparison of optic nerve head morphology viewed by
spectral domain optical coherence tomography and by serial
histology. Invest Ophthalmol Vis Sci 2010;51:1464-74.
11、Alkin Z, Kashani AH, López-Jaime GR, et al. Quantitative
analysis of retinal structures using spectral domain optical
coherence tomography in normal rabbits. Curr Eye Res
2013;38:299-304.Alkin Z, Kashani AH, López-Jaime GR, et al. Quantitative
analysis of retinal structures using spectral domain optical
coherence tomography in normal rabbits. Curr Eye Res
2013;38:299-304.
12、Bartuma H, Petrus-Reurer S, Aronsson M, et al. In
Vivo Imaging of Subretinal Bleb-Induced Outer Retinal
Degeneration in the Rabbit. Invest Ophthalmol Vis Sci
2015;56:2423-30.Bartuma H, Petrus-Reurer S, Aronsson M, et al. In
Vivo Imaging of Subretinal Bleb-Induced Outer Retinal
Degeneration in the Rabbit. Invest Ophthalmol Vis Sci
2015;56:2423-30.
13、Koinzer S, Bajorat S, Hesse C, et al. Calibration of
histological retina specimens after fixation in Margo's
solution and paraffin embedding to in-vivo dimensions,
using photography and optical coherence tomography.
Graefes Arch Clin Exp Ophthalmol 2014;252:145-53.Koinzer S, Bajorat S, Hesse C, et al. Calibration of
histological retina specimens after fixation in Margo's
solution and paraffin embedding to in-vivo dimensions,
using photography and optical coherence tomography.
Graefes Arch Clin Exp Ophthalmol 2014;252:145-53.
14、Ruggeri M, Wehbe H, Jiao S, et al. In vivo three-dimensional high-resolution imaging of rodent retina with
spectral-domain optical coherence tomography. Invest
Ophthalmol Vis Sci 2007;48:1808-14.Ruggeri M, Wehbe H, Jiao S, et al. In vivo three-dimensional high-resolution imaging of rodent retina with
spectral-domain optical coherence tomography. Invest
Ophthalmol Vis Sci 2007;48:1808-14.
15、Yamauchi Y, Yagi H, Usui Y, et al. Biological activity is the
likely origin of the intersection between the photoreceptor
inner and outer segments of the rat retina as determined
by optical coherence tomography. Clin Ophthalmol
2011;5:1649-53.Yamauchi Y, Yagi H, Usui Y, et al. Biological activity is the
likely origin of the intersection between the photoreceptor
inner and outer segments of the rat retina as determined
by optical coherence tomography. Clin Ophthalmol
2011;5:1649-53.
16、Dysli C, Enzmann V, Sznitman R, et al. Quantitative
Analysis of Mouse Retinal Layers Using Automated
Segmentation of Spectral Domain Optical Coherence
Tomography Images. Transl Vis Sci Technol 2015;4:9.Dysli C, Enzmann V, Sznitman R, et al. Quantitative
Analysis of Mouse Retinal Layers Using Automated
Segmentation of Spectral Domain Optical Coherence
Tomography Images. Transl Vis Sci Technol 2015;4:9.
17、Ehinger B, Zucker CL, Bruun A, et al. In vivo staining of
oligodendroglia in the rabbit retina. Glia 1994;10:40-8.Ehinger B, Zucker CL, Bruun A, et al. In vivo staining of
oligodendroglia in the rabbit retina. Glia 1994;10:40-8.
18、Haddad A, Salazar JJ, Laicine EM, et al. A direct contact
between astrocyte and vitreous body is possible in
the rabbit eye due to discontinuities in the basement
membrane of the retinal inner limiting membrane. Braz J
Med Biol Res 2003;36:207-11.Haddad A, Salazar JJ, Laicine EM, et al. A direct contact
between astrocyte and vitreous body is possible in
the rabbit eye due to discontinuities in the basement
membrane of the retinal inner limiting membrane. Braz J
Med Biol Res 2003;36:207-11.
19、Jo YH, Sung KR, Shin JW. Effects of Age on Peripapillary
and Macular Vessel Density Determined Using Optical
Coherence Tomography Angiography in Healthy Eyes.
Invest Ophthalmol Vis Sci 2019;60:3492-8.Jo YH, Sung KR, Shin JW. Effects of Age on Peripapillary
and Macular Vessel Density Determined Using Optical
Coherence Tomography Angiography in Healthy Eyes.
Invest Ophthalmol Vis Sci 2019;60:3492-8.
20、Ito Y, Sasaki M, Takahashi H, et al. Quantitative Assessment
of the Retina Using OCT and Associations with Cognitive
Function. Ophthalmology 2020;127:107-18.Ito Y, Sasaki M, Takahashi H, et al. Quantitative Assessment
of the Retina Using OCT and Associations with Cognitive
Function. Ophthalmology 2020;127:107-18.
21、McLenachan S, Magno AL, Ramos D, et al. Angiography
reveals novel features of the retinal vasculature in healthy
and diabetic mice. Exp Eye Res 2015;138:6-21.McLenachan S, Magno AL, Ramos D, et al. Angiography
reveals novel features of the retinal vasculature in healthy
and diabetic mice. Exp Eye Res 2015;138:6-21.
22、Zhao T, Zhang J, Zhang Y, et al. Vascular Endothelial
Growth Factor Receptor 2 Antibody, BC001, Attenuates
Laser-Induced Choroidal Neovascularization in Rhesus
Monkeys (Macaca mulatta). J Ocul Pharmacol Ther
2015;31:611-6.Zhao T, Zhang J, Zhang Y, et al. Vascular Endothelial
Growth Factor Receptor 2 Antibody, BC001, Attenuates
Laser-Induced Choroidal Neovascularization in Rhesus
Monkeys (Macaca mulatta). J Ocul Pharmacol Ther
2015;31:611-6.
23、Sugimoto Y, Mochizuki H, Miyagi H, et al. Histological
findings of uveal capillaries in rabbit eyes after multiple
intravitreal injections of bevacizumab. Curr Eye Res
2013;38:487-96.Sugimoto Y, Mochizuki H, Miyagi H, et al. Histological
findings of uveal capillaries in rabbit eyes after multiple
intravitreal injections of bevacizumab. Curr Eye Res
2013;38:487-96.
24、Yuan YZ, Yuan F, Xu QY, et al. Effect of Fufang
Xueshuantong Capsule on a rat model of retinal vein
occlusion. Chin J Integr Med 2011;17:296-301.Yuan YZ, Yuan F, Xu QY, et al. Effect of Fufang
Xueshuantong Capsule on a rat model of retinal vein
occlusion. Chin J Integr Med 2011;17:296-301.
25、Lin CH, Liao PL, Hsiao G, et al. Long-term
Fluorometholone Topical Use Induces Ganglion Cell
Damage in Rats Analyzed With Optical Coherence
Tomography. Toxicol Sci 2015;147:317-25.Lin CH, Liao PL, Hsiao G, et al. Long-term
Fluorometholone Topical Use Induces Ganglion Cell
Damage in Rats Analyzed With Optical Coherence
Tomography. Toxicol Sci 2015;147:317-25.
26、Ehrenberg M, Ehrenberg S, Schwob O, et al. Murine
fundus fluorescein angiography: An alternative approach
using a handheld camera. Exp Eye Res 2016;148:74-8.Ehrenberg M, Ehrenberg S, Schwob O, et al. Murine
fundus fluorescein angiography: An alternative approach
using a handheld camera. Exp Eye Res 2016;148:74-8.