Contrast is the differential luminance between one object and another. Contrast sensitivity (CS) quantifies the ability to detect this difference: estimating contrast threshold provides information about the quality of vision and helps diagnose and monitor eye diseases. High contrast visual acuity assessment is traditionally performed in the eye care practice, whereas the estimate of the discrimination of low contrast targets, an important complementary task for the perception of details, is far less employed. An example is driving when the contrast between vehicles, obstacles, pedestrians, and the background is reduced by fog. Many conditions can selectively degrade CS, while visual acuity remains intact. In addition to spatial CS, “temporal” CS is defined as the ability to discriminate luminance differences in the temporal domain, i.e., to discriminate information that reaches the visual cortex as a function of time. Likewise, temporal sensitivity of the visual system can be investigated in terms of critical fusion frequency (CFF), an indicator of the integrity of the magnocellular system that is responsible for the perception of transient stimulations. As a matter of fact, temporal resolution can be abnormal in neuro-ophthalmological clinical conditions. This paper aims at considering CS and its application to the clinical practice.
Background: To settle the fundamentals of a numerical procedure that relates retinal ganglion-cell density and threshold sensitivity in the visual field. The sensitivity of a generated retina and visual pathways to virtual stimuli are simulated, and the conditions required to reproduce glaucoma-type defects both in the optic-nerve head (ONH) and visual fields are explored.
Methods: A definition of selected structural elements of the optic pathways is a requisite to a translation of clinical knowledge to computer programs for visual field exploration. The program is able to generate a database of normalized visual fields. The relationship between the number of extant receptive fields and threshold sensitivity is plotted for background sensitivity and corresponding automated perimetry. A solution in two planes to the 3D distribution of axons in the ONH is proposed. Visual fields with induced damage in the optic disc are comparable in pattern and quantity to glaucomatous records.
Results: The two-level simulation of the ONH facilitates the analysis of optic-cup/retinal defects. We can generate the virtual optic pathways tailored to the age and morphology of the patient’s eye, and it is possible to reproduce glaucomatous damage by “reverse engineering” engineering. The virtual cortical model renders a quantitative relationship between visual defect and neural damage.
Conclusions: A two-level computing of the retina/optic nerve facilitates the analysis of neuroretinal defects and can be incorporated to automatic perimeters to facilitate visual field analysis.
Abstract: Optical coherence tomography (OCT) is a technology that is widely used to assess structural abnormalities in the retina for a variety of pediatric conditions. The introduction of this instrument has allowed for widespread access to minimally invasive standardized, reproducible quantified structural assessments of the optic nerve and retina. This has had important implications in pediatric optic neuropathies, populations in whom monitoring of disease activity is essential to making treatment decisions. OCT has had particular relevance for inflammatory optic neuropathies, as onset of an inflammatory optic neuropathy may herald the onset of a chronic inflammatory disorder of the central nervous system (CNS) such as multiple sclerosis, neuromyelitis optica spectrum disorder (aquaporin 4 antibody positive), and myelin oligodendrocyte glycoprotein (MOG) associated disorders. This paper will focus on the application of OCT technology to this group of disorders in pediatrics. After reviewing pediatric-specific anatomic and practical issues pertinent to OCT, we will review knowledge related to the use of OCT in inflammatory pediatric optic neuropathies, with a focus on structural outcomes and their correlation with functional outcome metrics.
Abstract: Optical coherence tomography (OCT) is a widely used non-invasive medical imaging technology that has revolutionized clinical care in ophthalmology. New developments, such as OCT angiography (OCTA) are expected to contribute even further to the widespread use of OCT-based imaging devices in the diagnosis and monitoring of patients with ophthalmic diseases. In recent years, many of the disadvantages such as limited field of view and imaging artefacts have been substantially reduced. Similar to the progress achieved in the assessment of retinal disorders, OCT is expected to change the approach to patients seen in the neuro-ophthalmology clinic. In this article, we review the technical features of OCT and OCT-based imaging techniques, highlighting the specific factors that should be taken into account when interpreting OCT in the field of neuro-ophthalmology.
Abstract: Effective and safe electrical stimulation of the retinal ganglion cells is at the heart of retinal prosthesis design. However, the effectiveness and safety demand of the electrical stimulation is often at odds against each other. Besides, the nerve fiber layer above retinal ganglion cells limits the spatial resolution of stimulation. Also, current retinal prosthesis still cannot selectively activate the ON or OFF visual pathways, thus cannot relay the correct luminance information to the brain. With decades of development, the stimulation protocol for retinal implants began to tackle these problems. We believe that a novel design of electrical stimulation scheme, combined with gene therapy technique, can improve the selectivity and spatial resolution of retinal implants and further lower the damage caused by electric stimulation.
Abstract: The most prominent causes of loss of vision in individuals over 50 years include age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy (DR). While it is important to screen for these diseases effectively, current eye care is not properly doing so for much of the population, resulting in unfortunate visual disability and high costs for patients. Innovative functional testing can be unified with other screening methods for a more robust and safer screening and prediction of disease. The goal in the creation of functional testing modalities is to develop highly sensitive screening tests that are easy to use, accessible to all users, and inexpensive. The tests herein are deployed on an iPad with easily understood and intuitive instructions for rapid, streamlined, and automatic administration. These testing modalities could become highly sensitive screenings for early detection of potentially blinding diseases. The applications from our collaborators at AMA Optics include a cone photostress recovery test for detection of AMD and diabetic macular edema (DME), brightness balance perception for optic nerve dysfunction and especially glaucoma, color vision testing which is a broad screening tool, and visual acuity test. Machine learning with the combined structural and functional data will optimize identification of disease and prediction of outcomes. Here, we review and assess various tests of visual function that are easily administered on a tablet for screening in primary care. These user-friendly and simple screening tests allow patients to be identified in the early stages of disease for referral to specialists, proper assessment and treatment.