Review Article

Molecular structure, pharmacokinetics and clinical evidence of brolucizumab: a narrative review

:-
 

Abstract: Macular neovascularization (MNV) is the hallmark of neovascular age-related macular degeneration (nAMD), one of the leading causes of vision loss in the developed world. The current MNV standard of care including frequent intravitreal anti-vascular endothelial growth factor (VEGF) injections, although has revolutionized favorably the treatment, places a substantial burden on patients, caregivers, and physicians. Brolucizumab is a newly developed single-chain antibody fragment that inhibits activation of VEGF receptor 2 with in vitro affinity and potency comparable to commercially-available anti-VEGF agents. Its small molecular weight and its design allow for high solubility and retinal tissue penetration, and improve bynding affinity to the target. Also a high clearance rate leading to minimal systemic exposure was observed. Brolucizumab has shown similar gains in visual acuity compared with other anti-VEGF molecules but a higher and earlier resolution of nAMD related fluid, achieving sustained macular dryness with longer mantainance injection interval ranging from 8 to 12 weeks after monthly loading doses. Rare cases of ocular inflammation also including retinal vasculitis and retinal vascular occlusions referred to an immune-mediated reaction posed safety concerns on selected patients and mantainance treatment interval shorter than 8 weeks.The present review summarizes several key points including the molecular structure and pharmacokinetics, the preclinical and clinical evidence of brolucizumab administration evaluating its efficacy, tolerability, and safety, extended dosing regimens and other indications still under clinical investigation.

Review Article

A narrative review on the role of abicipar in age-related macular degeneration

:-
 

Abstract: In developed countries, age-related macular degeneration (AMD) is the main cause of visual impairment in the elderly. Though the etiology of AMD is still unclear, it has been well understood that vascular endothelial growth factor (VEGF) is involved in the development of aberrant vasculature that represents the neovascular AMD (nAMD). Hence, VEGF inhibition is a more effective way to control nAMD. Pegaptanib, ranibizumab, and aflibercept are three drugs approved by the US Food and Drug Administration (FDA) to treat nAMD. Bevacizumab (an anti-VEGF medication comparable to ranibizumab) is already widely used off label. Existing anti-VEGF medicines are made up of antibodies or pieces of antibodies. Synthetic designed ankyrin repeat proteins (DARPins) imitate antibodies introduced recently by evolutions in bioengineering technology. These agents are designed to have high specificity and affinity to a specific target, smaller molecular size, and better tissue penetration, making them more stable and longer-acting at less concentration. Abicipar pegol (Allergan, Dublin, Ireland) is a DARPin that interlocks all VEGF-A isoforms. It has a greater affinity for VEGF and a longer intraocular half-life than ranibizumab, making it a feasible anti-VEGF agent. This review describes the properties and efficacy of abicipar, the new anti-VEGF agent, in clinical practice, which aims to improve outcomes, safety, and treatment burden of nAMD.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
出版者信息
中山大学中山眼科中心 版权所有粤ICP备:11021180