Review Article

The role of optical coherence tomography in neuro-ophthalmology

:-
 

Abstract: Optical coherence tomography (OCT) is an ocular imaging technique that can complement the neuro-ophthalmic assessment, and inform our understanding regarding functional consequences of neuroaxonal injury in the afferent visual pathway. Indeed, OCT has emerged as a surrogate end-point in the diagnosis and follow up of several demyelinating syndromes of the central nervous system (CNS), including optic neuritis (ON) associated with: multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), and anti-myelin oligodendrocyte glycoprotein (MOG) antibodies. Recent advancements in enhanced depth imaging (EDI) OCT have distinguished this technique as a new gold standard in the diagnosis of optic disc drusen (ODD). Moreover, OCT may enhance our ability to distinguish cases of papilledema from pseudopapilledema caused by ODD. In the setting of idiopathic intracranial hypertension (IIH), OCT has shown benefit in tracking responses to treatment, with respect to reduced retinal nerve fiber layer (RNFL) measures and morphological changes in the angling of Bruch’s membrane. Longitudinal follow up of OCT measured ganglion cell-inner plexiform layer thickness may be of particular value in managing IIH patients who have secondary optic atrophy. Causes of compressive optic neuropathies may be readily diagnosed with OCT, even in the absence of overt visual field defects. Furthermore, OCT values may offer some prognostic value in predicting post-operative outcomes in these patients. Finally, OCT can be indispensable in differentiating optic neuropathies from retinal diseases in patients presenting with vision loss, and an unrevealing fundus examination. In this review, our over-arching goal is to highlight the potential role of OCT, as an ancillary investigation, in the diagnosis and management of various optic nerve disorders.

Review Article

Design and recent results of large-scale cohort epidemiology studies on refractive error in children in Shanghai

:-
 

Abstract: Between 2011 and 2013, two large-scale cohort epidemiology studies were launched in Shanghai: the SCALE study, which aimed to provide ocular public health services to cover the entire youth population in Shanghai, and the SCES, which was based on sample surveys and aimed to provide information on the prevalence and incidence of visual impairment and different types of refractive errors. A total of 910,245 children and adolescents were finally enrolled in the SCALE study; three possible methods for monitoring refractive error without mydriasis were tested, and the agreement between the refractive outcomes of three commonly used autorefractors were examined to ensure the accuracy of the results of the SCALE study. A total of 8,627 children were enrolled in the SCES, and the baseline prevalence of different refractive errors, different behaviors associated with 1 year myopic shifts, and the different patterns of 2-year myopia progression between internal migrant and local resident school children have been analyzed. In some subset samples of the SCALE study and the SCES, several refraction components such as choroidal thickness (ChT) and crystalline lens power were also measured, to further elucidate the relationships between the refraction components and myopia as well as the mechanism of myopia incidence and development. The three methods used in Shanghai to prevent and intervene with childhood myopia: increasing outdoor time, low concentration atropine, and use of orthokeratology lens are also addressed in this review.

Original Article
Review Article
Cornea and Anterior segment
Brain and Perception

AB070. Feedback improves orientation discrimination in neurotypical adults, but not in adults with autism: a pilot study

:-
 

Background: Understanding how individuals with autism spectrum disorder (ASD) learn is important for developing and implementing effective educational and behavioral interventions. Evidence suggests that individuals with ASD are relatively stronger in certain areas of perception (Simmons et al., 2009; Dakin and Frith, 2005); it therefore cannot be assumed that individuals with ASD learn using the same rules and strategies as neurotypicals (NT). Of particular interest, perceptual learning (PL) is a class of learning that is based upon changes induced by the repeated exposure and response to specific types of perceptual information. Such learning often includes feedback, indicating whether or not a response was correct during a trial within a PL task. The objectives of this study were to perform a pilot investigation of; (I) perceptual learning in adults with and without ASD using a low-level orientation discrimination task; and (II) the influence of feedback on accuracy in this task.

Methods: Eleven adults with ASD and fifteen NT adults, matched on Wechsler full-scale IQ and age (18–31 years), performed a low-level PL task. They were asked to indicate whether a grating was tilted to the left (i.e., counter-clockwise) or to the right (i.e., clockwise) relative to an oblique 45-degree reference orientation. Thresholds, defined by the minimal deviation in degrees needed to discriminate tilt orientation, were measured for each participant every 15 minutes, with each block consisting of 420 trials. To assess baseline performance, all participants completed a first block with no feedback. Participants were then randomly assigned to either feedback (NASD =6, NTD =8) or no feedback groups (NASD =5, NTD =7) and completed six subsequent testing blocks.

Results: PL was defined as the percent change in orientation discrimination threshold in each of the six testing blocks relative to baseline performance. No significant increase was found in performance as a function of testing block for any group; PL was therefore not evidenced under the conditions tested. ASD performance remained equal to that of baseline across testing blocks, whether or not trial-by-trial feedback was present. In contrast, NT performance was significantly increased when feedback was present.

Conclusions: NT individuals significantly benefited from feedback, while individuals with ASD did not. These results provide preliminary evidence for a divergent learning style in ASD and NT individuals. These pilot findings raise important questions regarding the impact of feedback during interventions, and at a more basic level, the atypical underlying perceptual and cognitive processes in individuals with ASD.

Brain and Perception

AB062. Cortical state contribution to neuronal response variability

:-
 

Background: Visual cortex neurons often respond to stimuli very differently on repeated trials. This trial-by-trial variability is known to be correlated among nearby neurons. Our long-term goal is to quantitatively estimate neuronal response variability, using multi-channel local field potential (LFP) data from single trials.

Methods: Acute experiments were performed with anesthetized (Remifentanil, Propofol, nitrous oxide) and paralyzed (Gallamine Triethiodide) cats. Computer-controlled visual stimuli were displayed on a gamma-corrected CRT monitor. For the principal experiment, two kinds of visual stimuli were used: drifting sine-wave gratings, and a uniform mean-luminance gray screen. These two stimuli were each delivered monocularly for 100 sec in a random order, for 10 trials. Multi-unit activity (MUA) and LFP signals were extracted from broadband raw data acquired from Area 17 and 18 using A1X32 linear arrays (NeuroNexus) and the OpenEphys recording system. LFP signal processing was performed using Chronux, an open-source MATLAB toolbox. Current source density (CSD) analysis was performed on responses to briefly flashed full-field stimuli using the MATLAB toolbox, CSDplotter. The common response variability (global noise) of MUA was estimated using the model proposed by Scholvinck et al. [2015].

Results: On different trials, a given neuron responded with different firing to the same visual stimuli. Within one trial, a neuron’s firing rate also fluctuated across successive cycles of a drifting grating. When the animal was given extra anesthesia, neurons fired in a desynchronized pattern; with lighter levels of anesthesia, neuronal firing because more synchronized. By examining the cross-correlations of LFP signals recorded from different cortical layers, we found LFP signals could be divided to two groups: those recorded in layer IV and above, and those from layers V and VI. Within each group, LFP signals recorded by different channels are highly correlated. These two groups were observed in lighter and deeper anesthetized animals, also in sine-wave and uniform gray stimulus conditions. We also investigated correlations between LFP signals and global noise. Power in the LFP beta band was highly correlated with global noise, when animals were in deeper anesthesia.

Conclusions: Brain states contribute to variations in neuronal responses. Raw LFP correlation results suggest that we should analyze LFP data according to their laminar organization. Correlation of low-frequency LFP under deeper anesthesia with global noise gives us some insight to predict noise from single-trial data, and we hope to extend this analysis to lighter anesthesia in the future.

Brain and Perception

AB053. Oscillatory activity specific to peripheral emotional treatment induced by a visual steady state

:-
 

Background: Research suggests that the analysis of facial expressions by a healthy brain would take place approximately 170 ms after the presentation of a facial expression in the superior temporal sulcus and the fusiform gyrus, mostly in the right hemisphere. Some researchers argue that a fast pathway through the amygdala would allow automatic and early emotional treatment around 90 ms after stimulation. This treatment would be done subconsciously, even before this stimulus is perceived and could be approximated by presenting the stimuli quickly on the periphery of the fovea. The present study aimed to identify the neural correlates of a peripheral and simultaneous presentation of emotional expressions through a frequency tagging paradigm.

Methods: The presentation of emotional facial expressions at a specific frequency induces in the visual cortex a stable and precise response to the presentation frequency [i.e., a steady-state visual evoked potential (ssVEP)] that can be used as a frequency tag (i.e., a frequency-tag to follow the cortical treatment of this stimulus. Here, the use of different specific stimulation frequencies allowed us to label the different facial expressions presented simultaneously and to obtain a reliable cortical response being associated with (I) each of the emotions and (II) the different times of presentations repeated (1/0.170 ms =~5.8 Hz, 1/0.090 ms =~10.8 Hz). To identify the regions involved in emotional discrimination, we subtracted the brain activity induced by the rapid presentation of six emotional expressions of the activity induced by the presentation of the same emotion (reduced by neural adaptation). The results were compared to the hemisphere in which attention was sought, emotion and frequency of stimulation.

Results: The signal-to-noise ratio of the cerebral oscillations referring to the treatment of the expression of fear was stronger in the regions specific to the emotional treatment when they were presented in the subjects peripheral vision, unbeknownst to them. In addition, the peripheral emotional treatment of fear at 10.8 Hz was associated with greater activation within the Gamma 1 and 2 frequency bands in the expected regions (frontotemporal and T6), as well as desynchronization in the Alpha frequency bands for the temporal regions. This modulation of the spectral power is independent of the attentional request.

Conclusions: These results suggest that the emotional stimulation of fear presented in the peripheral vision and outside the attentional framework elicit an increase in brain activity, especially in the temporal lobe. The localization of this activity as well as the optimal stimulation frequency found for this facial expression suggests that it is treated by the fast pathway of the magnocellular layers.

Perspective

The inverted retina and the evolution of vertebrates: an evo-devo perspective

:-
 

Abstract: The inverted retina is a basic characteristic of the vertebrate eye. This implies that vertebrates must have a common ancestor with an inverted retina. Of the two groups of chordates, cephalochordates have an inverted retina and urochordates a direct retina. Surprisingly, recent genetics studies favor urochordates as the closest ancestor to vertebrates. The evolution of increasingly complex organs such as the eye implies not only tissular but also structural modifications at the organ level. How these configurational modifications give rise to a functional eye at any step is still subject to debate and speculation. Here we propose an orderly sequence of phylogenetic events that closely follows the sequence of developmental eye formation in extant vertebrates. The progressive structural complexity has been clearly recorded during vertebrate development at the period of organogenesis. Matching the chain of increasing eye complexity in Mollusca that leads to the bicameral eye of the octopus and the developmental sequence in vertebrates, we delineate the parallel evolution of the two-chambered eye of vertebrates starting with an early ectodermal eye. This sequence allows for some interesting predictions regarding the eyes of not preserved intermediary species. The clue to understanding the inverted retina of vertebrates and the similarity between the sequence followed by Mollusca and chordates is the notion that the eye in both cases is an ectodermal structure, in contrast to an exclusively (de novo) neuroectodermal origin in the eye of vertebrates. This analysis places cephalochordates as the closest branch to vertebrates contrary to urochordates, claimed as a closer branch by some researchers that base their proposals in a genetic analysis.

Review Article

Treatment for diabetic macular oedema: looking further into the evidence

:-
 

Keywords: Diabetic macular edema (DME); diabetic macular oedema (DMO); anti-vascular endothelial growth factor (anti-VEGF); laser photocoagulation; randomised clinical trials (RCTs); retina; diabetic retinopathy

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
出版者信息
中山大学中山眼科中心 版权所有粤ICP备:11021180