Visual Impairment and Rehabilitation

AB095. Development of an assessment system of driver visual behaviours on a car simulator

:-
 

Background: (I) To describe the development and components of the automobile simulator driving behavior evaluation system developed by CRIR-Institut Nazareth et Louis-Braille; (II) to present the preliminary results of the content evaluation of the driving behavior evaluation grid.

Methods: The evaluation system consists of five components: (I) the VS500M Car Simulator (Virage Simulation); (II) four VS500M driving scenarios, modified to minimize the occurrence of simulator sickness and expose subjects to commonly encountered driving situations on highways and city boulevards; (III) the Tobii Pro Glasses 2 eye tracking device; (IV) a car simulator driving behavior observation grid (DBOG); (V) a software application used during the behaviour evaluation phase, where synchronized video tracking, certain data from the simulator (e.g., speed) and the DBOG grid are presented. Initially, the expected safe driving behaviors were identified, including 235 of a visual nature, supported by literature data and consultation of the project steering committee and an expert in driving assessment. Driving behaviors were assessed in 22 subjects without visual impairment (mean age 55±20 years). Subsequently, the items were revised to determine their relevance based on their importance in terms of road safety or on the frequency with which behaviors were observed among participants. For analysis purpose, the items of the DBOG were grouped according to their content, by type of expected driving behavior (e.g., following a stop, look to the left and right before crossing the intersection) or element to be detected (e.g., pedestrians).

Results: Some visual behaviors are difficult to observe with the eye tracker device because they are more dependent on peripheral than central vision. Others are rarely observed, possibly because they are little or not realized in daily life or the representation of reality on the simulator does not stimulate their adoption. On the other hand, the visual detection behaviors expected in a situation where safety can be compromised are mostly carried out (e.g., detection of oncoming vehicles, side mirror verification when changing lanes).

Conclusions: This first phase of the study has made possible to better target the items to be kept in the car simulator driving behavior observation grid, and those that will have to be removed as they are too difficult to observe or too rarely adopted by the participants. Content validity and inter-rater reliability will be assessed from the simplified grid.

Visual Impairment and Rehabilitation

AB096. Neurophysiological measures of stigma stereotypes

:-
 

Background: The perceptions surrounding assistive technology have been shown to be increasingly stigmatizing in older adult populations. This stigmatization can lead individuals to the abandonment of the assistive device. Until now, the methods of identifying or predicting the stigma surrounding assistive technology has mostly been qualitative in nature. Here we present a novel quantitate and qualitative research study that uses neuro-cognitive (psychophysics and EEG) and eye tracking technology, in addition to a new questionnaire to investigate the stigma associated with assistive devices. Therefore, this approach plays a major role in understanding and predicting the neural and physiological correlates associated to stigma.

Methods: Thirty-four older adults (>50 years) took part in the study. To determine the psychophysiological predictors of stigma surrounding assistive technologies, we monitored brain activity using EEG, heart rate and eye movements using an eye-tracker while participants viewed a series of images containing either an older or younger individual in different social scenarios (e.g., talking to doctor, at coffee shop). In each scenario, the individual uses either no assistive device, a low stigmatizing device (e.g., iPad), or a high stigmatizing device (e.g., electronic magnifier).

Results: Here we present preliminary analysis of the eye movement data. Analysis shows that in comparison to images that contained a low stigmatizing device, in images that contain high stigmatizing devices, the latency to fixate the device is shorter, first fixation duration is longer, and the total number of fixations on the device are higher. The environment that the devices is used in has no effect on eye movement metrics.

Conclusions: Although the sample size is small, and based on a healthy older-adult population, these initial observations would indicate that latency to fixate and first fixation duration are predictors of stigma associated with assistive devices. Future research should expand this prediction to those actively using assistive devices, and how the measures predict abandonment over time.

Review Article

Navigation technology/eye-tracking in ophthalmology: principles, applications and benefits—a narrative review

:-
 

Abstract: Navigation technology in ophthalmology, colloquially called “eye-tracking”, has been applied to various areas of eye care. This approach encompasses motion-based navigation technology in both ophthalmic imaging and treatment. For instance, modern imaging instruments use a real-time eye-tracking system, which helps to reduce motion artefacts and increase signal-to-noise ratio in imaging acquisition such as optical coherence tomography (OCT), microperimetry, and fluorescence and color imaging. Navigation in ophthalmic surgery has been firstly applied in laser vision corrective surgery and spread to involve navigated retinal photocoagulation, and positioning guidance of intraocular lenses (IOL) during cataract surgery. It has emerged as one of the most reliable representatives of technology as it continues to transform surgical interventions into safer, more standardized, and more predictable procedures with better outcomes. Eye-tracking is essential in refractive surgery with excimer laser ablation. Using this technology for cataract surgery in patients with high preoperative astigmatism has produced better therapeutic outcomes. Navigated retinal laser has proven to be safer and more accurate compared to the use of conventional slit lamp lasers. Eye-tracking has also been used in imaging diagnostics, where it is essential for proper alignment of captured zones of interest and accurate follow-up imaging. This technology is not routinely discussed in the ophthalmic literature even though it has been truly impactful in our clinical practice and represents a small revolution in ophthalmology.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
出版者信息
中山大学中山眼科中心 版权所有粤ICP备:11021180