Review Article

Biologics in non-infectious uveitis past, present and future

:-
 

Abstract: Our increase in knowledge of the pathophysiology of non-infectious uveitis (NIU) and other immune-mediated diseases has been mirrored over the last two decades by the expansion of therapeutic options in the realm of immunosuppressive medications. Principal among these advances is the emergence of biologics, which offer the promise of targeted therapy and the hope of reduced toxicity when compared to corticosteroids and “standard” immunosuppression. Among the biologics, monoclonal antibodies blocking tumor necrosis factor alpha (TNF-α) have been shown to be a very effective therapeutic target for uveitis and many associated systemic inflammatory diseases. Multiple TNF blockers have shown benefit for uveitis, and in 2016, adalimumab became the first biologic and non-corticosteroid immunosuppressive to obtain Food and Drug Administration (FDA) approval in the treatment of NIU. Although effective, TNF blockers are not universally so, and safety concerns such as infection and demyelinating disease must be carefully considered and ruled out prior to their use, especially in patients with intermediate uveitis with which multiple sclerosis is a known association. Ongoing study has identified novel targets for regulation in the treatment of immune-mediated and inflammatory diseases. Interferons, interleukin and Janus kinase inhibitors in addition to antibodies targeting T cell and B cell activation highlight the expanding field of treatment modalities in NIU. Ongoing study will be required to better determine the safety and efficacy of biologics in the armamentarium of immunosuppressive treatments for NIU.

Review Article
Case Report

Bilateral papilledema caused by chronic infantile neurological cutaneous and articular syndrome in a child with a novel (p. D305N) mutation in NLRP3 gene: a case report

:-
 

Abstract: The rare disease of chronic infantile neurological cutaneous and articular (CINCA) syndrome, is caused by the over-secretion of interleukin (IL)-1β due to a gain-of-function NLRP3 gene mutation in the autosomal chromosome which often involves in eyes. In this report, we studied a 9-year-old girl with CINCA. The eyes were also involved and presented bilateral papilledema. Genetic testing revealed that the symptoms were caused by a novel gene mutation site (c.913G>A, p. D305N) in conservative domain exon-3 of NLRP3 which is gain-function gene of CINCA. The patient had the characteristic facial features, frontal fossa and saddle nose, manifested the generalized urticaria-like skin rash at two weeks after birth, periodic fever 6 months after birth, sensorineural deafness at 7 years old, and bilateral papilledema, aseptic meningitis and knee arthropathy at 9 years old. White cell counts, C-reactive protein increased and intracranial pressure raised to 300 mmH2O. The meningeal thickening enhanced by gadolinium in magnetic resonance imaging (MRI). Based on clinical features and genetic test, the girl was diagnosed bilateral papilledema secondary to CINCA and administered prednisone and lowered intracranial pressure medicine to resolve symptoms. With 3-year follow-up, patient had no inflammatory flare-up with visual acuity improvement. The finding of novel genetic mutation site (p. D305N) in NLRP3 gene expanded genotype spectrum associated with CINCA. This case also expanded the cause spectrum of papilledema and it highlighted systemic disease history for patients with bilateral papilledema.

Review Article

Narrative review of goniotomy with the Kahook Dual Blade for the treatment of glaucoma

:-
 

Abstract: Glaucoma is a group of eye diseases that seriously threaten human visual health. Increased intraocular pressure is the main clinical manifestation and diagnostic basis of glaucoma and is directly related to increased resistance to aqueous circulation channels. The trabecular meshwork (TM) is a multi-layer spongy tissue that filters aqueous humor. Its structure changes and the filtering capacity decreases, leading to an increase in intraocular pressure. Surgical methods for TM are constantly updated. Compared with traditional glaucoma surgical techniques, such as external trabeculectomy, the development of a new surgical technique—minimally invasive glaucoma surgery (MIGS)—enables the operation to reduce intraocular pressure efficiently while further reducing damage to the eye. MIGS achieves the purpose of surgery mainly by optimizing the TM outflow pathway, uveoscleral outflow pathway, and subconjunctival outflow pathway. A new surgical instrument, the Kahook Dual Blade, appears to optimize the TM outflow pathway in the surgical technique. The Kahook Dual Blade is a new type of angle incision instrument. Because of its unique double-edged design, in the process of goniotomy, it can effectively reduce the damage to the anterior chamber angle structure and accurately remove the appropriate amount of TM so that the aqueous humor can flow out smoothly. Kahook Dual Blade goniotomy has the advantages of avoiding complications and foreign body sensation caused by intraocular implants. The operation time is relatively short, the surgical technique is easy to master, and the TM resection scope can be determined based on the patient’s condition. It can be used to treat some clinically meaningful glaucoma. This article is organized as follows. We present the following article following the Narrative Review reporting checklist.

Review Article

Navigation technology/eye-tracking in ophthalmology: principles, applications and benefits—a narrative review

:-
 

Abstract: Navigation technology in ophthalmology, colloquially called “eye-tracking”, has been applied to various areas of eye care. This approach encompasses motion-based navigation technology in both ophthalmic imaging and treatment. For instance, modern imaging instruments use a real-time eye-tracking system, which helps to reduce motion artefacts and increase signal-to-noise ratio in imaging acquisition such as optical coherence tomography (OCT), microperimetry, and fluorescence and color imaging. Navigation in ophthalmic surgery has been firstly applied in laser vision corrective surgery and spread to involve navigated retinal photocoagulation, and positioning guidance of intraocular lenses (IOL) during cataract surgery. It has emerged as one of the most reliable representatives of technology as it continues to transform surgical interventions into safer, more standardized, and more predictable procedures with better outcomes. Eye-tracking is essential in refractive surgery with excimer laser ablation. Using this technology for cataract surgery in patients with high preoperative astigmatism has produced better therapeutic outcomes. Navigated retinal laser has proven to be safer and more accurate compared to the use of conventional slit lamp lasers. Eye-tracking has also been used in imaging diagnostics, where it is essential for proper alignment of captured zones of interest and accurate follow-up imaging. This technology is not routinely discussed in the ophthalmic literature even though it has been truly impactful in our clinical practice and represents a small revolution in ophthalmology.

Review Article

Conjunctival flaps for the treatment of advanced ocular surface disease—looking back and beyond

:-
 
 Conjunctival flaps have previously proven to be effective in preserving the globe for individuals with severe ocular surface disease. Infectious keratitis, neurotrophic keratitis, nontraumatic corneal melts, descemetoceles, perforations, and corneal burns are all indications for this procedure. The flaps promote nutrition, metabolism, structure, and vascularity, as well as reduce pain, irritation, inflammation, and infection. Furthermore, patients avoid the emotional and psychological repercussions of enucleation or evisceration, while requiring fewer postoperative medications and office visits. Currently, fewer flaps are performed due to the emergence of additional therapeutic techniques, such as serum tears, bandage lenses, corneal grafting, Oxervate, amniotic membrane, and umbilical cord grafting. However, despite newer conservative medical methods, conjunctival flaps have been demonstrated to be useful and advantageous. Moreover, future technologies and approaches for globe preservation and sight restoration after prior conjunctival flaps are anticipated. Herein, we review the history, advantages, and disadvantages of various surgical techniques: Gundersen’s bipedicle flap, partial limbal advancement flap, selective pedunculated conjunctival flap with or without Tenon’s capsule, and Mekonnen’s modified inferior palpebral-bulbar conjunctival flap. The surgical pearls and recommendations offered by the innovators are also reviewed, including restrictions and potential complications. Procedures for visual rehabilitation in selective cases after conjunctival flap are reviewed as well.
Case Report

Prolonged conjunctivitis mimicking nodular episcleritis as a manifestation of granulomatosis with polyangiitis—a case report

:-
 

Abstract: Red eye is common in our daily practice. It ranges from non-inflammatory to inflammatory causes. An extended course of disease should prompt suspicion and the possibility of diagnosis revision. A prolonged conjunctivitis mimicking nodular episcleritis can be presented as a manifestation of granulomatosis with polyangiitis (GPA). A 57-year-old woman complained of eye redness and tearing for two weeks which partially resolved with antibiotics. She was subsequently commenced on topical and oral non-steroidal anti-inflammatory drugs (NSAIDs) and topical anti-allergic. However, in the following reviews she developed cornea thinning and her systemic examination revealed an injected uvula with absence of upper respiratory tract infection. She was investigated for connective tissue disease and found to have raised anti-inflammatory markers and her antinuclear antibody and C-ANCA tests were positive. She was diagnosed with GPA. Her conditions improved followed by the commencement of topical corticosteroid with high dose of systemic corticosteroid, which followed by a tapering regime with oral corticosteroid. Although red eye is common, it is associated with a variety of diseases. GPA manifestation can be as subtle as a red eye. Any prolonged partially treated red eye should prompt suspicion of a more sinister cause. Sensitive detection of other subtle systemic signs is very important.

Study Protocol

In vitro models of retinal diseases

:-
 

Background: Continuous and primary in vitro cultures are largely used to study cellular mechanisms occurring in several pathologic-like or pathological conditions. Continuous cell lines allow to perform long-lasting experiments since they do not undergo senescence.

Methods: The immortalized Moorfields/Institute of Ophtalmology-Müller 1 (MIO-M1) cell type represents a valuable model to analyze the mechanistic pathways characterizing Müller glial cells, both in health and in disease. MIO-M1 can be used to dissect the response of these glial cells following treatments which mimic pathological condition. For instance, MIO-M1 are useful to study the response of this cell type to stress condition as the case of oxidative stress (OS) (cultured with hydrogen peroxide), pathological neovascularization (cultured with VEGF), hypoxic or hyperoxic condition (cultured in low or high oxygen chamber). On the other hand, primary cultures allow to specifically analyze cellular responses without the interference of the whole organ, although the experimental treatment is performed in vivo. Primary Müller cells can be used to perform electrophysiological analyses of different cell sites.

Discussion: We describe how to manage MIO-M1 cells and how to analyze their response to different stress conditions; moreover, we report how to isolate and identify primary Müller cells and how to perform patch clamp and single cell recordings on them.

Review Article

A revisit to staining reagents for neuronal tissues

:-
 

Abstract: In the early days of deciphering the injured neuronal tissues led to the realization that contrast is necessary to discern the parts of the recovering tissues from the damaged ones. Early attempts relied on available (and often naturally occurring) staining substances. Incidentally, the active ingredients of most of them were small molecules. With the advent of time, the knowledge of chemistry helped identify compounds and conditions for staining. The staining reagents were even found to enhance the visibility of the organelles. Silver impregnation identification of Golgi bodies was discovered in owl optic nerve. Staining reagents since the late 1800s were widely used across all disciplines and for nerve tissue and became a key contributor to advancement in nerve-related research. The use of these reagents provided insight into the organization of the neuronal tissues and helped distinguish nerve degeneration from regeneration. The neuronal staining reagents have played a fundamental role in the clinical research facilitating the identification of biological mechanisms underlying eye and neuropsychiatric diseases. We found a lack of systematic description of all staining reagents, whether they had been used historically or currently used. There is a lack of readily available information for optimal staining of different neuronal tissues for a given purpose. We present here a grouping of the reagents based on their target location: (I) the central nervous system (CNS), (II) the peripheral nervous system (PNS), or (III) both. The biochemical reactions of most of the staining reagents is based on acidic or basic pH and specific reaction partners such as organelle or biomolecules that exists within the given tissue type. We present here a summary of the chemical composition, optimal staining condition, use for given neuronal tissue and, where possible, historic usage. Several biomolecules such as lipids and metabolites lack specific antibodies. Despite being non-specific the reagents enhance contrast and provide corroboration about the microenvironment. In future, these reagents in combination with emerging techniques such as imaging mass spectrometry and kinetic histochemistry will validate or expand our understanding of localization of molecules within tissues or cells that are important for ophthalmology and vision science.

Review Article
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
出版者信息
中山大学中山眼科中心 版权所有粤ICP备:11021180