Review Article

Corneal neurotization: a narrative review of techniques, outcomes, and surgical considerations

:22-33
 
Background and Objective: Corneal neurotization is a novel surgical technique used to restore corneal sensation in patients with neurotrophic keratopathy. Neurotrophic keratopathy is a disorder characterized by dysfunction of the ophthalmic division of the trigeminal nerve, which provides sensory innervation to the cornea. Without sensation, the cornea is at risk of infection, ulceration, perforation, and ultimately, vision loss. Corneal neurotization has emerged as an innovative technique to reinnervate anesthetized corneas by transferring a healthy donor nerve to the affected eye around the corneoscleral limbus. As the field of corneal neurotization rapidly grows, there is a need to synthesize the existing body of literature on corneal neurotization and identify important areas for further research. In this review, we will discuss neurotrophic keratopathy and its current management strategies, followed by an overview of corneal neurotization techniques, outcomes, surgical considerations, and future directions. Methods: PubMed and Google Scholar searches were conducted to retrieve and analyze relevant original papers and reviews on neurotrophic keratopathy and corneal neurotization up until April 2022.Key Content and Findings: Currently, numerous techniques for corneal neurotization exist, including direct nerve transfers, as well as indirect neurotization via interposition nerve grafts. So far, corneal neurotization has been shown to be highly successful in restoring corneal sensation, improving visual acuity,and improving corneal epithelial health. To date, there have been no significant differences in outcomes between direct versus indirect neurotization techniques, different donor nerves, or autologous versus allogeneic interposition grafts. However, there is some evidence that corneal neurotization procedures may be more successful in pediatric patients.Conclusions: Corneal neurotization shows great promise in treating neurotrophic corneas and represents the first management option to date that addresses the underlying pathophysiological mechanism of neurotrophic keratopathy by restoring corneal sensation. As the use of corneal neurotization continues to broaden, additional studies will become important to compare techniques in a systematic manner, with larger sample sizes, as well as standardized outcome measures and follow-up time.
Review Article

Cell-based therapies for limbal stem cell deficiency: a literature review

:22-55
 
Background and Objective: Limbal stem cell deficiency (LSCD) is characterized by the insufficiency of limbal stem cells to maintain the corneal epithelium. Severe cases of LSCD may be treated with limbal transplantation from healthy autologous or allogeneic limbal tissue. Multiple cell-based therapies have been studied as alternative treatments to improve success rates and minimize immunosuppressive regimens after allogeneic transplants. In this review, we describe the success rates, and complications of different cell-based therapies for LSCD. We also discuss each therapy’s relative strengths and weaknesses, their history in animal and human studies, and their effectiveness compared to traditional transplants.
Methods: PubMed was searched for publications using the terms LSCD, cell-based therapy, cultivated limbal epithelial transplantation (CLET), cultivated oral mucosal epithelial transplantation (COMET),and mesenchymal stem cells from 1989 to August 2022. Inclusion criteria were English language articles.Exclusion criteria were non-English language articles.
Key Content and Findings: current cell-based therapies for LSCD are CLET and non-limbal epithelial cells. Non-limbal epithelial cell methods include COMET, conjunctival epithelial autografts, and mesenchymal stem/stromal cells (MSCs). Moreover, several alternative potential sources of non-limbal cells have described, including induced pluripotent stem cells (iPSCs), human embryonic stem cells (hESCs),human dental pulp stem cells, hair follicle bulge-derived epithelial stem cells, amniotic membrane epithelial cells, and human umbilical cord lining epithelial cells.
Conclusions: Cell-based therapies are a promising treatment modality for LSCD. While CLET is currently the only approved cell-based therapy and is only approved in the European Union, more novel methods have also been shown to be effective in human or animal studies thus far. Non-limbal epithelial cells such as COMET are also an alternative treatment to allogeneic transplants especially as a surface stabilizing procedure. iPSCs are currently being studied in early phase trials and have the potential to revolutionize the way LSCD is treated. Lastly, cell-based therapies for restoring the limbal niche such as mesenchymal stem cells have also shown promising results in the first human proof-of-concept study. Several potential sources of non-limbal cells are under investigation.
Review Article

Amniotic membrane transplantation: an updated clinical review for the ophthalmologist

:22-56
 
Although amniotic membrane transplantation (AMT) has long been used as an essential surgical technique for ocular surface reconstruction, its role continues to evolve and expand. In the management of numerous ocular surface disorders, ranging from inflammatory to infectious, traumatic to neoplastic, the ability to perform AMT is a valuable addition to the skillset of any ophthalmologist. The purpose of this paper is to provide ophthalmologists with an updated, evidence-based review of the clinical indications for AMT in corneal and conjunctival reconstruction, reviewing its common and even experimental applications known to date. The methods of amniotic membrane preservation, the available commercial amniotic membrane products to date, and future directions for amniotic membrane use, including amniotic membrane extract eye drops (AMEED), are also discussed. It is paramount for ophthalmologists to stay up-to-date on the applications of AMT so as to effectively incorporate this versatile treatment modality into their practice,both in the operating room and in the clinic. By familiarizing the general ophthalmologist with its diverse applications, we hope to motivate general ophthalmologists to incorporate the use of AMT into their clinical practice, or provide guidance on how to recognize when referral to a corneal specialist for amniotic membrane application is prudent.
Review Article

A narrative review of limbal stem cell deficiency & severe ocular surface disease

:22-35
 
Background and Objective: Limbal stem cell deficiency (LSCD) describes the clinical condition when there is dysfunction of the corneal epithelial stem/progenitor cells and the inability to sustain the normal homeostasis of the corneal epithelium. The limbal stem cells are located in a specialized area of the eye called the palisades of Vogt (POV). There have been significant advances in the diagnosis and management of LSCD over the past decade and this review focuses on the pathophysiology of LSCD, its clinical manifestations, diagnosis, and causes.
Methods: Papers regarding LSCD were searched using PubMed to identify the current state of diagnosis and causes of LSCD published through to June 2022. 
Key Content and Findings: LSCD is clinically demonstrated by a whorl-epitheliopathy, loss of the POV, and conjunctivalization of the cornea. The diagnosis of this condition is based on clinical examination and aided by the use of impression cytology, in vivo confocal microscopy, and anterior segment optical coherence tomography (asOCT). There are many causes of LSCD, but those which are most common include chemical injuries, aniridia, contact lens wear, and Stevens-Johnson syndrome (SJS).
Conclusions: While this condition is most commonly encountered by corneal specialists, it is important that other ophthalmologists recognize the possibility of LSCD as it may arise in other co-morbid eye conditions.
Review Article

An updated narrative review of treatment for limbal epithelial stem cell deficiency

:22-51
 
Background and Objective: Nearly 30 years have passed since limbal stem cell deficiency (LSCD) was first identified by pioneers and given clinical attention. LSCD remains a difficult disease to treat. It can potentially lead to blinding. At present, understanding of limbal stem cells (LSCs) has deepened and various treatment options for LSCD have been devised. The objective of this review is to summarize basic knowledge of LSCD and current treatment strategies.
Methods: PubMed search was performed to find studies published in English on LSCs and LSCD including original reports and reviews. Literatures published from 1989 to 2022 were reviewed.
Key Content and Findings: LSCs are enigmatic stem cells for which no specific marker has been discovered yet. Although LSCD is not difficult to diagnose, it is still challenging to treat. An important advancement in the treatment of LSCD is the provision of guidelines for selecting systematic surgical treatment according to the patient’s condition. It is also encouraging that stem cell technologies are being actively investigated for their potential usefulness in the treatment of LSCD.
Conclusions: Although various treatment options for LSCD have been developed, it should be kept in mind that the best chance of treatment for LSCD is in the early stage of the disease. Every effort should be made to preserve as many LSCs as possible in the early treatment of LSCD.
Review Article

Conjunctival flaps for the treatment of advanced ocular surface disease—looking back and beyond

:-
 
Conjunctival flaps have previously proven to be effective in preserving the globe for individuals with severe ocular surface disease. Infectious keratitis, neurotrophic keratitis, nontraumatic corneal melts, descemetoceles, perforations, and corneal burns are all indications for this procedure. The flaps promote nutrition, metabolism, structure, and vascularity, as well as reduce pain, irritation, inflammation, and infection. Furthermore, patients avoid the emotional and psychological repercussions of enucleation or evisceration, while requiring fewer postoperative medications and office visits. Currently, fewer flaps are performed due to the emergence of additional therapeutic techniques, such as serum tears, bandage lenses, corneal grafting, Oxervate, amniotic membrane, and umbilical cord grafting. However, despite newer conservative medical methods, conjunctival flaps have been demonstrated to be useful and advantageous. Moreover, future technologies and approaches for globe preservation and sight restoration after prior conjunctival flaps are anticipated. Herein, we review the history, advantages, and disadvantages of various surgical techniques: Gundersen’s bipedicle flap, partial limbal advancement flap, selective pedunculated conjunctival flap with or without Tenon’s capsule, and Mekonnen’s modified inferior palpebral-bulbar conjunctival flap. The surgical pearls and recommendations offered by the innovators are also reviewed, including restrictions and potential complications. Procedures for visual rehabilitation in selective cases after conjunctival flap are reviewed as well.
Editorial
Technical Note

Allogeneic sclera graft combined autologous conjunctival flap for repairing the emergent corneal perforation

:-
 

Abstract: To report a palliative and alternative surgical procedure, allogeneic sclera graft combined with autologous conjunctival flap (ASGACF), employing to repair the large emergent corneal perforation. The detail protocol of the surgical procedure was characterized and four representative cases were reviewed. An allogeneic sclera graft and recipient bed were prepared as the traditional penetrating keratoplasty (PK). And then sutured the sclera graft to the bed with 10-0 nylon suture and covered with a pedicled autologous conjunctival flap in half size. In the follow-up, the ASGACF repaired all of the corneal perforations and restored the integral walls of eyeballs, in spite of one who underwent a second surgery. This surgical procedure provided a palliative method to repair the large emergent corneal perforation while there is the lack of a corneal graft.

Review Article
Case Records of the Zhongshan Ophthalmic Center

Case 01-2017 —Primary vitreoretinal lymphoma (PVRL): report of a case and update of literature from 1942 to 2016

:-
 

Abstract: Primary vitreoretinal lymphoma (PVRL), as a subset of primary central nervous system lymphoma (PCNSL), is a rare and fatal ocular malignancy. Most PVRL masquerades as chronic posterior uveitis, which makes the clinical diagnosis challenging. Vitreous cells, subretinal lesions and imaging techniques are essential for clinical diagnosis. Importantly, cytopathology/histopathology identification of malignant cells is the gold standard for the diagnosis of PVRL. In addition, molecular detection of immunoglobulin heavy chain (IgH) or T cell receptor (TCR) gene rearrangements, immunophenotyping for cell markers, and cytokine analysis of interleukine-10 elevation are often used as adjunct procedures. Current management of PVRL involves local radiation, intravitreal chemotherapy (methotrexate and rituximab), with or without systemic chemotherapy depending on the involvement of non-ocular tissues. In cases with concomitant PCNSL, systemic high-dose methotrexate/rituximab based therapy in conjunction with local therapy, whole brain radiotherapy and/or autologous stem cell transplantation is considered. Although PVRL normally responds well to initial treatment, high rates of relapse and CNS involvement usually lead to poor prognosis and limited survival. A professional team of medical experts in ophthalmologists, ocular pathologists, neuro-oncologists and hemato-oncologists is essential for optimizing patient management.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
出版者信息
中山大学中山眼科中心 版权所有粤ICP备:11021180