Editorial
Review Article
Review Article

Pediatric neuro-ophthalmology: not simply neuro-ophthalmology for small adults

:-
 

Abstract: Pediatric neuro-ophthalmology is a subspecialty within neuro-ophthalmology. Pediatric neuro-ophthalmic diseases must be considered separate from their adult counterparts, due to the distinctive nature of the examination, clinical presentations, and management choices. This manuscript will highlight four common pediatric neuro-ophthalmic disorders by describing common clinical presentations, recommended management, and highlighting recent developments. Diseases discussed include pediatric idiopathic intracranial hypertension (IIH), pseudopapilledema, optic neuritis (ON) and optic pathway gliomas (OPG). The demographics, diagnosis and management of common pediatric neuro-ophthalmic disease require a working knowledge of the current research presented herein. Special attention should be placed on the differences between pediatric and adult entities such that children can be appropriately diagnosed and treated.

Editorial
Review Article

Myopia prevention in Taiwan

:-
 

Abstract: Complications of myopia have become an important public health issue with serious socio-economic burdens. Prevention and treatment are both important. The Taiwan Student Vision Care Program (TSVCP) promoted by Ministry of Education (MOE) has been carried out for 3 decades in Taiwan. The myopia prevalence has increased rapidly to a high level and therefore myopia prevention has continued to be the most important item in the program. Therefore, TSVCP aims to decrease the prevalence of myopia, in order to decrease the high myopia related blindness in the future. Recently, outdoor activity has been found to be an important protective factor for myopia and was implemented in TSVCP since 2010. Afterwards, the nationwide vision impairment rate (uncorrected vision 20/25 or less) of elementary school students declined unprecedentedly and continuously in recent years. Evidence-based protective and risk factors for myopia are now clearer. Widespread acknowledgement of myopic disease, preventing the onset of myopia, prompt diagnosis, and early treatment to control progression are all important.

Case Report

Rescue with intravitreal bevacizumab in aggressive posterior retinopathy of prematurity poorly responsive to laser treatment

:-
 

Abstract: Successful management of a case of aggressive posterior retinopathy of prematurity (APROP) poorly responsive to laser therapy with intravitreal bevacizumab (IVB) is discussed. IVB is useful as rescue therapy in such cases, if given within the correct window period post laser therapy.

Case Report
Review Article

Pathologic myopia

:-
 

Abstract: Pathologic myopia is the major cause of the loss of the best-corrected visual acuity (BCVA) worldwide, especially in East Asian countries. The loss of BCVA is caused by the development of myopic macula patchy, myopic traction macula patchy, and myopic optic neuropathy (or glaucoma). The development of such vision-threatening complications is caused by eye deformity, characterized by a formation of posterior staphyloma. The recent advance in ocular imaging has greatly facilitated the clarification of pathologies and pathogenesis of pathological myopia and myopia-related complications. These technologies include ultra-wide field fundus imaging, swept-source optical coherence tomography, and 3D MRI. In addition, the new treatments such as anti-VEGF therapies for myopic choroid all neovascularization have improved the outcome of the patients. Swept-source OCT showed that some of the lesions of myopic maculopathy were not simply chorioretinal atrophy but were Bruch’s membrane holes. Features of myopic traction maculopathy have been analyzed extensively by using OCT. The understanding the pathophysiology of complications of pathologic myopia is considered useful for better management of this blinding eye disease.

Review Article

The present and the prospect of bioengineering cornea

:-
 

Abstract: Corneal blindness represents one of the world’s three major causes of blindness, and the fundamental problem of corneal transplantation is a severe shortage of donor tissues worldwide, resulting in approximately 1.5 million new cases of blindness annually. To address the growing need for corneal transplants two main approaches are being pursued: allogenic and bioengineering cornea. Bioengineering corneas are constructed by naturally generating an extracellular matrix (ECM) component as the scaffold structure with or without corneal cells. It is well established that the scaffold structure directs the fate of cells, therefore, the fabrication of the correct scaffold structure components could produce an ideal corneal substitute, able to mimic the native corneal function. Another key factor in the construction of tissue engineering cornea is seed cells. However, unlike the epithelium and stroma cells, human cornea endothelium cells (HCECs) are notorious for having a limited proliferative capacity in vivo because of the mitotic block at the G1 phase of the cell cycle due to “contact-inhibition”. This review will focus on the main concepts of recent progress towards the scaffold and seed cells, especially endothelial cells for bioengineering cornea, along with future perspectives.

Review Article

The development of tissue engineering corneal scaffold: which one the history will choose?

:-
 

Abstract: Since the 21st century, the development of corneal tissue engineering technology has been developing rapidly. With the progress of biomaterials, cell culture and tissue engineering technology, tissue engineering cornea has gained great development in both basic scientific research and clinical application. In particular, tissue engineered corneal scaffolds are the core components of tissue engineered corneas. It is the focus of current research on tissue engineering cornea to search for scaffolds with good biocompatibility, high safety and good biomechanical properties. In this paper, the recent research progress of tissue engineering corneal materials is reviewed.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
出版者信息
中山大学中山眼科中心 版权所有粤ICP备:11021180