Review Article

Psychophysics in the ophthalmological practice—II. Contrast sensitivity

:-
 
Contrast is the differential luminance between one object and another. Contrast sensitivity (CS) quantifies the ability to detect this difference: estimating contrast threshold provides information about the quality of vision and helps diagnose and monitor eye diseases. High contrast visual acuity assessment is traditionally performed in the eye care practice, whereas the estimate of the discrimination of low contrast targets, an important complementary task for the perception of details, is far less employed. An example is driving when the contrast between vehicles, obstacles, pedestrians, and the background is reduced by fog. Many conditions can selectively degrade CS, while visual acuity remains intact. In addition to spatial CS, “temporal” CS is defined as the ability to discriminate luminance differences in the temporal domain, i.e., to discriminate information that reaches the visual cortex as a function of time. Likewise, temporal sensitivity of the visual system can be investigated in terms of critical fusion frequency (CFF), an indicator of the integrity of the magnocellular system that is responsible for the perception of transient stimulations. As a matter of fact, temporal resolution can be abnormal in neuro-ophthalmological clinical conditions. This paper aims at considering CS and its application to the clinical practice.
Review Article

The role of optical coherence tomography in neuro-ophthalmology

:-
 

Abstract: Optical coherence tomography (OCT) is an ocular imaging technique that can complement the neuro-ophthalmic assessment, and inform our understanding regarding functional consequences of neuroaxonal injury in the afferent visual pathway. Indeed, OCT has emerged as a surrogate end-point in the diagnosis and follow up of several demyelinating syndromes of the central nervous system (CNS), including optic neuritis (ON) associated with: multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), and anti-myelin oligodendrocyte glycoprotein (MOG) antibodies. Recent advancements in enhanced depth imaging (EDI) OCT have distinguished this technique as a new gold standard in the diagnosis of optic disc drusen (ODD). Moreover, OCT may enhance our ability to distinguish cases of papilledema from pseudopapilledema caused by ODD. In the setting of idiopathic intracranial hypertension (IIH), OCT has shown benefit in tracking responses to treatment, with respect to reduced retinal nerve fiber layer (RNFL) measures and morphological changes in the angling of Bruch’s membrane. Longitudinal follow up of OCT measured ganglion cell-inner plexiform layer thickness may be of particular value in managing IIH patients who have secondary optic atrophy. Causes of compressive optic neuropathies may be readily diagnosed with OCT, even in the absence of overt visual field defects. Furthermore, OCT values may offer some prognostic value in predicting post-operative outcomes in these patients. Finally, OCT can be indispensable in differentiating optic neuropathies from retinal diseases in patients presenting with vision loss, and an unrevealing fundus examination. In this review, our over-arching goal is to highlight the potential role of OCT, as an ancillary investigation, in the diagnosis and management of various optic nerve disorders.

Visual Impairment and Rehabilitation

AB095. Development of an assessment system of driver visual behaviours on a car simulator

:-
 

Background: (I) To describe the development and components of the automobile simulator driving behavior evaluation system developed by CRIR-Institut Nazareth et Louis-Braille; (II) to present the preliminary results of the content evaluation of the driving behavior evaluation grid.

Methods: The evaluation system consists of five components: (I) the VS500M Car Simulator (Virage Simulation); (II) four VS500M driving scenarios, modified to minimize the occurrence of simulator sickness and expose subjects to commonly encountered driving situations on highways and city boulevards; (III) the Tobii Pro Glasses 2 eye tracking device; (IV) a car simulator driving behavior observation grid (DBOG); (V) a software application used during the behaviour evaluation phase, where synchronized video tracking, certain data from the simulator (e.g., speed) and the DBOG grid are presented. Initially, the expected safe driving behaviors were identified, including 235 of a visual nature, supported by literature data and consultation of the project steering committee and an expert in driving assessment. Driving behaviors were assessed in 22 subjects without visual impairment (mean age 55±20 years). Subsequently, the items were revised to determine their relevance based on their importance in terms of road safety or on the frequency with which behaviors were observed among participants. For analysis purpose, the items of the DBOG were grouped according to their content, by type of expected driving behavior (e.g., following a stop, look to the left and right before crossing the intersection) or element to be detected (e.g., pedestrians).

Results: Some visual behaviors are difficult to observe with the eye tracker device because they are more dependent on peripheral than central vision. Others are rarely observed, possibly because they are little or not realized in daily life or the representation of reality on the simulator does not stimulate their adoption. On the other hand, the visual detection behaviors expected in a situation where safety can be compromised are mostly carried out (e.g., detection of oncoming vehicles, side mirror verification when changing lanes).

Conclusions: This first phase of the study has made possible to better target the items to be kept in the car simulator driving behavior observation grid, and those that will have to be removed as they are too difficult to observe or too rarely adopted by the participants. Content validity and inter-rater reliability will be assessed from the simplified grid.

Visual Impairment and Rehabilitation

AB096. Neurophysiological measures of stigma stereotypes

:-
 

Background: The perceptions surrounding assistive technology have been shown to be increasingly stigmatizing in older adult populations. This stigmatization can lead individuals to the abandonment of the assistive device. Until now, the methods of identifying or predicting the stigma surrounding assistive technology has mostly been qualitative in nature. Here we present a novel quantitate and qualitative research study that uses neuro-cognitive (psychophysics and EEG) and eye tracking technology, in addition to a new questionnaire to investigate the stigma associated with assistive devices. Therefore, this approach plays a major role in understanding and predicting the neural and physiological correlates associated to stigma.

Methods: Thirty-four older adults (>50 years) took part in the study. To determine the psychophysiological predictors of stigma surrounding assistive technologies, we monitored brain activity using EEG, heart rate and eye movements using an eye-tracker while participants viewed a series of images containing either an older or younger individual in different social scenarios (e.g., talking to doctor, at coffee shop). In each scenario, the individual uses either no assistive device, a low stigmatizing device (e.g., iPad), or a high stigmatizing device (e.g., electronic magnifier).

Results: Here we present preliminary analysis of the eye movement data. Analysis shows that in comparison to images that contained a low stigmatizing device, in images that contain high stigmatizing devices, the latency to fixate the device is shorter, first fixation duration is longer, and the total number of fixations on the device are higher. The environment that the devices is used in has no effect on eye movement metrics.

Conclusions: Although the sample size is small, and based on a healthy older-adult population, these initial observations would indicate that latency to fixate and first fixation duration are predictors of stigma associated with assistive devices. Future research should expand this prediction to those actively using assistive devices, and how the measures predict abandonment over time.

Brain and Perception

AB058. A longitudinal study on the effects of the optic nerve crush on behavioural visual acuity measures in mice

:-
 

Background: Visual deficits, caused by ocular disease or trauma to the visual system, can cause lasting damage with insufficient treatment options available. However, recent research has focused on neural plasticity as a means to regain visual abilities. In order to better understand the involvement of neural plasticity and reorganization in partial vision restoration, we aim to evaluate the partial recovery of a visual deficit over time using three behavioural tests. In our study, a partial optic nerve crush (ONC) serves as an induced visual deficit, allowing for residual vision from surviving cells.

Methods: Three behavioural tests—optokinetic reflex, object recognition, and visual cliff—were conducted in 9 mice prior to a bilateral, partial ONC, then 1, 3, 7, 14, 21, and 28 days after the ONC. The optokinetic reflex test measured the tracking reflex in response to moving sinusoidal gratings. These gratings increase in spatial frequency until a reflex is no longer observed, i.e., a visual acuity threshold is reached. The object recognition test examines the animal’s exploratory behaviour in its capacity to distinguish high versus low contrast objects. The visual cliff test also evaluates exploratory behaviour, by simulating a cliff to observe the animal’s sense of depth perception. All three tests provide an estimate of the rodent’s visual abilities at different levels of the visual pathway.

Results: The partial optic nerve crush resulted in a total loss of visual acuity as measured by the optokinetic reflex. The deficit did not show improvement during the 4 following weeks. Despite the visual cliff test showing a non-significant decrease in deep end preference 1-day post ONC, though this was not the case for subsequent test occasions. The object recognition test showed no significant trends.

Conclusions: In conclusion, the optokinetic reflex test showed a significant loss of function following the visual deficit, but no recovery. However, a complimentary pilot study shows visual recovery using lighter crush intensities. The spatial visual function does not seem to be affected by the ONC, suggesting that the object recognition and visual cliff tests, in their current design, may rely on somatosensory means of exploration.

Brain and Perception

AB054. Audio—visual multiple object tracking

:-
 

Background: The ability to track objects as they move is critical for successful interaction with objects in the world. The multiple object tracking (MOT) paradigm has demonstrated that, within limits, our visual attention capacity allows us to track multiple moving objects among distracters. Very little is known about dynamic auditory attention and the role of multisensory binding in attentional tracking. Here, we examined whether dynamic sounds congruent with visual targets could facilitate tracking in a 3D-MOT task.

Methods: Participants tracked one or multiple target-spheres among identical distractor-spheres during 8 seconds of movement in a virtual cube. In the visual condition, targets were identified with a brief colour change, but were then indistinguishable from the distractors during the movement. In the audio-visual condition, the target-spheres were accompanied by a sound, which moved congruently with the change in the target’s position. Sound amplitude varied with distance from the observer and inter-aural amplitude difference varied with azimuth.

Results: Results with one target showed that performance was better in the audiovisual condition, which suggests that congruent sounds can facilitate attentional visual tracking. However, with multiple targets, the sounds did not facilitate tracking.

Conclusions: This suggests that audiovisual binding may not be possible when attention is divided between multiple targets.

Psychophysics in the ophthalmological practice—II. Contrast sensitivity

:-
 

Abstract: Contrast is the differential luminance between one object and another. Contrast sensitivity (CS) quantifies the ability to detect this difference: estimating contrast threshold provides information about the quality of vision and helps diagnose and monitor eye diseases. High contrast visual acuity assessment is traditionally performed in the eye care practice, whereas the estimate of the discrimination of low contrast targets, an important complementary task for the perception of details, is far less employed. An example is driving when the contrast between vehicles, obstacles, pedestrians, and the background is reduced by fog. Many conditions can selectively degrade CS, while visual acuity remains intact. In addition to spatial CS, “temporal” CS is defined as the ability to discriminate luminance differences in the temporal domain, i.e., to discriminate information that reaches the visual cortex as a function of time. Likewise, temporal sensitivity of the visual system can be investigated in terms of critical fusion frequency (CFF), an indicator of the integrity of the magnocellular system that is responsible for the perception of transient stimulations. As a matter of fact, temporal resolution can be abnormal in neuro-ophthalmological clinical conditions. This paper aims at considering CS and its application to the clinical practice.

Editorial Commentary
Review Article

Application of optical coherence tomography in hereditary, toxic and metabolic optic neuropathies

:-
 

Abstract: Hereditary, metabolic and toxic optic neuropathies cause bilateral, central vision loss and therefore can result in severe impairment in visual function. Accurate, early diagnosis is critical, as nutritional and toxic optic neuropathies may be reversible if identified early, and diagnosis of hereditary optic neuropathies can prevent unnecessary invasive workup, provide prognostic information, and allow for effective genetic counseling. Optical coherence tomography (OCT) is a valuable tool that aids in the diagnosis and prognostication of optic neuropathies as it allows for quantification of changes in the retinal ganglion cells (RGCs) and retinal nerve fiber layer (RNFL) over time. We review the characteristic clinical presentations of hereditary, metabolic and toxic optic neuropathies, with an emphasis on OCT findings.

Review Article

Optical coherence tomography in ischemic optic neuropathy

:-
 

Abstract: Ischemic optic neuropathies are among the most common causes of sudden vision loss, especially in patients over age 50. The cause and prognosis of these disorders, and in particular non-arteritic anterior ischemic optic neuropathy, is poorly understood, and treatments remain poor in terms of restoring or preserving vision. Optical coherence tomography (OCT) and OCT angiography have allowed us to identify early and late structural changes in the optic nerve head and retina that may assist in predicting visual outcomes and may lead to greater understanding of pathogenesis and thus the development of effective medical interventions.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办: 中山大学
    承办: 中山大学中山眼科中心
    主编: 林浩添
    主管:中华人民共和国教育部
    主办: 中山大学
    浏览
出版者信息
中山大学中山眼科中心 版权所有粤ICP备:11021180